Python控制台进度图神器(python控制台在哪)
off999 2024-09-14 07:16 76 浏览 0 评论
前言
有时候在使用Python处理比较耗时操作的时候,为了便于观察处理进度,这时候就需要通过进度条将处理情况进行可视化展示,以便我们能够及时了解情况。这对于第三方库非常丰富的Python来说,想要实现这一功能并不是什么难事。
tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows、Linux、mac等系统,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况、结合pandas,等进度展示。
大家先看看tqdm的进度条效果
安装
github地址:https://github.com/tqdm/tqdm
想要安装tqdm也是非常简单的,通过pip或conda就可以安装,而且不需要安装其他的依赖库
pip安装
pip install tqdm
conda安装
conda install -c conda-forge tqdm
迭代对象处理
对于可以迭代的对象都可以使用下面这种方式,来实现可视化进度,非常方便
from tqdm import tqdm import time for i in tqdm(range(100)): time.sleep(0.1) pass
在使用tqdm的时候,可以将tqdm(range(100))替换为trange(100)代码如下
from tqdm import tqdm,trange import time for i in trange(100): time.sleep(0.1) pass
观察处理的数据
通过tqdm提供的set_description方法可以实时查看每次处理的数据
from tqdm import tqdm
import time
pbar = tqdm(["a","b","c","d"])
for c in pbar:
time.sleep(1)
pbar.set_description("Processing %s"%c)
手动设置处理的进度
通过update方法可以控制每次进度条更新的进度
from tqdm import tqdm import time #total参数设置进度条的总长度 with tqdm(total=100) as pbar: for i in range(100): time.sleep(0.05) #每次更新进度条的长度 pbar.update(1)
除了使用with之外,还可以使用另外一种方法实现上面的效果
from tqdm import tqdm import time #total参数设置进度条的总长度 pbar = tqdm(total=100) for i in range(100): time.sleep(0.05) #每次更新进度条的长度 pbar.update(1) #关闭占用的资源 pbar.close()
linux命令展示进度条
不使用tqdm
$ time find . -name '*.py' -type f -exec cat \{} \; | wc -l
857365
real 0m3.458s
user 0m0.274s
sys 0m3.325s
使用tqdm
$ time find . -name '*.py' -type f -exec cat \{} \; | tqdm | wc -l
857366it [00:03, 246471.31it/s]
857365
real 0m3.585s
user 0m0.862s
sys 0m3.358s
指定tqdm的参数控制进度条
$ find . -name '*.py' -type f -exec cat \{} \; |
tqdm --unit loc --unit_scale --total 857366 >> /dev/null
100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]
$ 7z a -bd -r backup.7z docs/ | grep Compressing |
tqdm --total $(find docs/ -type f | wc -l) --unit files >> backup.log
100%|███████████████████████████████▉| 8014/8014 [01:37<00:00, 82.29files/s]
自定义进度条显示信息
通过set_description和set_postfix方法设置进度条显示信息
from tqdm import trange
from random import random,randint
import time
with trange(100) as t:
for i in t:
#设置进度条左边显示的信息
t.set_description("GEN %i"%i)
#设置进度条右边显示的信息
t.set_postfix(loss=random(),gen=randint(1,999),str="h",lst=[1,2])
time.sleep(0.1)
from tqdm import tqdm
import time
with tqdm(total=10,bar_format="{postfix[0]}{postfix[1][value]:>9.3g}",
postfix=["Batch",dict(value=0)]) as t:
for i in range(10):
time.sleep(0.05)
t.postfix[1]["value"] = i / 2
t.update()
多层循环进度条
通过tqdm也可以很简单的实现嵌套循环进度条的展示
from tqdm import tqdm import time for i in tqdm(range(20), ascii=True,desc="1st loop"): for j in tqdm(range(10), ascii=True,desc="2nd loop"): time.sleep(0.01)
在pycharm中执行以上代码的时候,会出现进度条位置错乱,目前官方并没有给出好的解决方案,这是由于pycharm不支持某些字符导致的,不过可以将上面的代码保存为脚本然后在命令行中执行,效果如下
多进程进度条
在使用多进程处理任务的时候,通过tqdm可以实时查看每一个进程任务的处理情况
from time import sleep
from tqdm import trange, tqdm
from multiprocessing import Pool, freeze_support, RLock
L = list(range(9))
def progresser(n):
interval = 0.001 / (n + 2)
total = 5000
text = "#{}, est. {:<04.2}s".format(n, interval * total)
for i in trange(total, desc=text, position=n,ascii=True):
sleep(interval)
if __name__ == '__main__':
freeze_support() # for Windows support
p = Pool(len(L),
# again, for Windows support
initializer=tqdm.set_lock, initargs=(RLock(),))
p.map(progresser, L)
print("\n" * (len(L) - 2))
pandas中使用tqdm
import pandas as pd import numpy as np from tqdm import tqdm df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) tqdm.pandas(desc="my bar!") df.progress_apply(lambda x: x**2)
递归使用进度条
下面的代码是实现递归遍历文件夹
from tqdm import tqdm
import os.path
def find_files_recursively(path, show_progress=True):
files = []
# total=1 assumes `path` is a file
t = tqdm(total=1, unit="file", disable=not show_progress)
if not os.path.exists(path):
raise IOError("Cannot find:" + path)
def append_found_file(f):
files.append(f)
t.update()
def list_found_dir(path):
"""returns os.listdir(path) assuming os.path.isdir(path)"""
try:
listing = os.listdir(path)
except:
return []
# subtract 1 since a "file" we found was actually this directory
t.total += len(listing) - 1
# fancy way to give info without forcing a refresh
t.set_postfix(dir=path[-10:], refresh=False)
t.update(0) # may trigger a refresh
return listing
def recursively_search(path):
if os.path.isdir(path):
for f in list_found_dir(path):
recursively_search(os.path.join(path, f))
else:
append_found_file(path)
recursively_search(path)
t.set_postfix(dir=path)
t.close()
return files
find_files_recursively("E:/")
注意
在使用tqdm显示进度条的时候,如果代码中存在print可能会导致输出多行进度条,此时可以将print语句改为tqdm.write,代码如下
for i in tqdm(range(10),ascii=True):
tqdm.write("come on")
time.sleep(0.1)
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
慕ke 前端工程师2024「完整」
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
