百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python pandas 读取csv/txt数据文件 python读取csv/txt文件

off999 2024-10-13 04:18 17 浏览 0 评论

导读

主要利用pandas.read_csv接口对csv格式文件或txt文件进行读取,由于CSV格式文件使用非常频繁,功能强大,参数众多,因此在这里专门做详细介绍


使用示例


# 基础用法
import pandas as pd
pd.read_csv(path)
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210
4  000006.SZ       6  深振业A   深圳     区域地产   19920427

# 如何指定字符集类型 encoding=None
pd.read_csv(path, encoding="utf8")

# 如何指定表头/列名行 header=0
pd.read_csv(path)
                                    # 作者是archie
ts_code   symbol name area industry   list_date
000001.SZ 000001 平安银行 深圳   银行          19910403
000002.SZ 000002 万科A  深圳   全国地产        19910129
000004.SZ 000004 ST国华 深圳   软件服务        19910114
000005.SZ 000005 ST星源 深圳   环境保护        19901210
pd.read_csv(path, header=1)
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210

# 如何指定分隔符 sep=","
pd.read_csv(path)
  ts_code/symbol/name/area/industry/list_date
0        000001.SZ/000001/平安银行/深圳/银行/19910403
1       000002.SZ/000002/万科A/深圳/全国地产/19910129
2      000004.SZ/000004/ST国华/深圳/软件服务/19910114
3      000005.SZ/000005/ST星源/深圳/环境保护/19901210
pd.read_csv(path, sep='/')
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210

# 如何自定义列名 names=None
pd.read_csv(path)
   000001.SZ  000001  平安银行  深圳    银行  19910403
0  000002.SZ       2   万科A  深圳  全国地产  19910129
1  000004.SZ       4  ST国华  深圳  软件服务  19910114
2  000005.SZ       5  ST星源  深圳  环境保护  19901210
pd.read_csv(path, names=['ts_code','symbol','name','area','industry','list_date'])
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210

# 如何指定行索引 index_col=None
pd.read_csv(path)
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210
pd.read_csv(path, index_col="ts_code")
           symbol  name area industry  list_date
ts_code                                         
000001.SZ       1  平安银行   深圳       银行   19910403
000002.SZ       2   万科A   深圳     全国地产   19910129
000004.SZ       4  ST国华   深圳     软件服务   19910114
000005.SZ       5  ST星源   深圳     环境保护   19901210

# 如何读入指定列数据 usecols=None
pd.read_csv(path, usecols=["ts_code"])
     ts_code
0  000001.SZ
1  000002.SZ
2  000004.SZ
3  000005.SZ
pd.read_csv(path, usecols=["ts_code", "area"])
     ts_code area
0  000001.SZ   深圳
1  000002.SZ   深圳
2  000004.SZ   深圳
3  000005.SZ   深圳

# 如何读入前N行数据 nrows=None
pd.read_csv(path)
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129
2  000004.SZ       4  ST国华   深圳     软件服务   19910114
3  000005.SZ       5  ST星源   深圳     环境保护   19901210
pd.read_csv(path, nrows=2)
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行   19910403
1  000002.SZ       2   万科A   深圳     全国地产   19910129

# 如何跳过前N行数据 skiprows=None
pd.read_csv(path, skiprows=2)
   000002.SZ  000002   万科A  深圳  全国地产  19910129
0  000004.SZ       4  ST国华  深圳  软件服务  19910114
1  000005.SZ       5  ST星源  深圳  环境保护  19901210

# 如何指定数据类型 dtype=None
pd.read_csv(path, dtype={"list_date": "str"}).info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 6 columns):
 #   Column     Non-Null Count  Dtype 
---  ------     --------------  ----- 
 0   ts_code    4 non-null      object
 1   symbol     4 non-null      int64 
 2   name       4 non-null      object
 3   area       4 non-null      object
 4   industry   4 non-null      object
 5   list_date  4 non-null      object
dtypes: int64(1), object(5)
memory usage: 320.0+ bytes

# 如何读入时进行数据运算 converters=None
pd.read_csv(path, converters={"ts_code": lambda code: code[:6]})
  ts_code  symbol  name area industry  list_date
0  000001       1  平安银行   深圳       银行   19910403
1  000002       2   万科A   深圳     全国地产   19910129
2  000004       4  ST国华   深圳     软件服务   19910114
3  000005       5  ST星源   深圳     环境保护   19901210

# 如何读入时对日期时间列进行转换 parse_dates=False
pd.read_csv(path, parse_dates=["list_date"])
     ts_code  symbol  name area industry  list_date
0  000001.SZ       1  平安银行   深圳       银行 1991-04-03
1  000002.SZ       2   万科A   深圳     全国地产 1991-01-29
2  000004.SZ       4  ST国华   深圳     软件服务 1991-01-14
3  000005.SZ       5  ST星源   深圳     环境保护 1990-12-10
pd.read_csv(path, parse_dates=["list_date"]).info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 6 columns):
 #   Column     Non-Null Count  Dtype         
---  ------     --------------  -----         
 0   ts_code    4 non-null      object        
 1   symbol     4 non-null      int64         
 2   name       4 non-null      object        
 3   area       4 non-null      object        
 4   industry   4 non-null      object        
 5   list_date  4 non-null      datetime64[ns]
dtypes: datetime64[ns](1), int64(1), object(4)
memory usage: 320.0+ bytes


参数解析


# 以下为默认参数
pd.read_csv(
    filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]],   #文件路径
    sep=',',    #分割符
    delimiter=None,    #备选分隔符,如果指定该参数,则sep参数失效
    header='infer',    #指定第几行是表头,也就是指定列名行。由于默认参数skip_blank_lines=True,header参数将忽略空行和注释行, 因此header=0表示第一行数据而非文件的第一行
    names=None,    #指定列名,传入列表
    index_col=None,    #指定索引列,可以理解为行名
    usecols=None,    #使用数据的部分列,传需要读入的列名或序号[列名1,列名2],或excel中自带列名ABCD...如“A,B”或"A:D"
    squeeze=False,    #读入数据只一列时转Series对象,默认不转 
    prefix=None,    #指定一个前缀,列名改为 前缀+序号
    mangle_dupe_cols=True,    #当列名有重复时,解析列名将变为X, X.1...,为False时后面重复列名的列会覆盖前列
    dtype=None,    #指定各数据列的数据类型,精准指定可传字典或列表
    engine=None,    #可以选择C或Python,一般不用
    converters=None,    ##对某一列使用Lambda函数,进行某种运算
    true_values=None,    #同false_values一起使用,若在列表中则数据变true
    false_values=None,    #同true_values一起使用,若在列表中数据变false
    skipinitialspace=False,
    skiprows=None,    #跳过前几行,可传列表跳过多行(列名行为第0行),也可以传入Lambda函数如读取偶数行:skiprows=lambda x:x%2==0
    skipfooter=0,    #对应skiprows,跳过后几行
    nrows=None,    #读入前几行
    na_values=None,     #将指定的值更改为NaN,可传列表进行多个替换
    keep_default_na=True,     #默认True,读入空值为NaN,False直接无数据
    na_filter=True,     #空值标记,默认标记空值,False时不标记空值且参数keep_default_na和na_values都会失效
    skip_blank_lines=True,    #不读入空行
    parse_dates=False,    #传入需要进行解析日期列,如日期分三列存放可如下进行解析:parse_dates={"list_date": ["年", "月", "日"]}
    date_parser=None,    #配合parse_dates,对parse_dates参数传入列进行数据转化利用Lambda函数
    keep_date_col=False,    #parse_dates参数可以将多列合并并解析成一个时间列,此时使用该参数可以保留原有时间列
    dayfirst=False,    #如果parse_dates参数可以,会对转换后的日期转换为该月的第一天
    iterator=False,    #是否返回TextFileReader对象,可迭代
    chunksize=None,    #指定块大小,处理大型csv文件时使用,按块读入,返回可迭代TextFileReader对象
    compression='infer',    #指定压缩格式,用于对磁盘数据进行即时解压缩。如果为“infer”,且传入文件路径是以.gz、.bz2、.zip或.xz结尾的字符串,则使用gzip、bz2、zip或xz,否则不进行解压缩。如果使用zip,则ZIP文件必须仅包含一个要读取的数据文件。设置为None将不进行解压缩
    lineterminator=None,    #指定换行符,仅对C解析器有效
    quotechar='"',    #表示引用数据的开始和结束的字符
    escapechar=None,    #传入一个转义符,用于过滤数据中的该转入符
    comment=None,    #注释标识符,忽略每一行传入字符串之后的数据
    encoding=None,    #指定字符集类型,通常指定为'utf-8')

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: