基于 Tensorflow 轻松实现 XOR 运算!| CSDN 博文精选
off999 2024-10-14 12:14 19 浏览 0 评论
作者 | beyond_LH
责编 | 胡雪蕊
出品 | CSDN博客
对于“XOR”大家应该都不陌生,我们在各种课程中都会遇到,它是一个数学逻辑运算符号,在计算机中表示为“XOR”,在数学中表示为“”,学名为“异或”,其来源细节就不详细表明了,说白了就是两个a、b两个值做异或运算,若a=b则结果为0,反之为1,即“相同为0,不同为1”。
在计算机早期发展中,逻辑运算广泛应用于电子管中,这一点如果大家学习过微机原理应该会比较熟悉,那么在神经网络中如何实现它呢,早先我们使用的是感知机,可理解为单层神经网络,只有输入层和输出层(在吴恩达老师的系列教程中曾提到过这一点,关于神经网络的层数,至今仍有异议,就是说神经网络的层数到底包不包括输入层,现今多数认定是不包括的,我们常说的N层神经网络指的是隐藏层+输出层),但是感知机是无法实现XOR运算的,简单来说就是XOR是线性不可分的,由于感知机是有输入输出层,无法线性划分XOR区域,于是后来就有了使用多层神经网络来解决这一问题的想法~~
关于多层神经网络实现XOR运算可大致这么理解:
两个输入均有两个取值0和1,那么组合起来就有四种可能,即[0,0]、[0,1]、[1,0]、[1,1],这样就可以通过中间的隐藏层进行异或运算了~
咱们直接步入正题吧,对于此次试验我们只需要一个隐藏层即可,关于神经网络 的基础知识建议大家去看一下吴恩达大佬的课程,真的很棒,百看不厌,真正的大佬是在认定学生是绝对小白的前提下去讲解的,所以一般人都能听懂~~接下来的图纯手工操作,可能不是那么准确,但中心思想是没有问题的,我们开始吧:
上图是最基本的神经网络示意图,有两个输入x1、x2,一个隐藏层,只有一个神经元,然后有个输出层,这就是最典型的“输入层+隐藏层+输出层”的架构,对于本题目,我们的输入和输出以及整体架构如下图所示:
输入量为一个矩阵,0和0异或结果为0,0和1异或结果为1,依次类推,对应我们的目标值为[0,1,1,0],最后之所以用约等号是因为我们的预测值与目标值之间会有一定的偏差,如果训练的好那么这二者之间是无限接近的。
我们直接上全部代码吧,就不分步进行了,以为这个实验本身难度较低,且代码注释很清楚,每一步都很明确,如果大家有什么不理解的可以留言给我,看到必回:
1#!/usr/bin/env python
2# -*- coding:utf-8 -*-
3
4import numpy as np
5import tensorflow as tf
6
7#定义输入值与目标值
8X=np.array([[0,0],[0,1],[1,0],[1,1]])
9Y=np.array([[0],[1],[1],[0]])
10
11#定义占位符,从输入或目标中按行取数据
12x=tf.placeholder(tf.float32,[None,2])
13y=tf.placeholder(tf.float32,[None,1])
14
15#初始化权重,使其满足正态分布,w1和w2分别为输入层到隐藏层和隐藏层到输出层的权重矩阵
16w1=tf.Variable(tf.random_normal([2,2]))
17w2=tf.Variable(tf.random_normal([2,1]))
18
19#定义b1和b2,分别为隐藏层和输出层的偏移量
20b1=tf.Variable([0.1,0.1])
21b2=tf.Variable([0.1])
22
23#使用Relu激活函数得到隐藏层的输出值
24a=tf.nn.relu(tf.matmul(x,w1)+b1)
25
26#输出层不用激活函数,直接获得其值
27out=tf.matmul(a,w2)+b2
28
29#定义损失函数MSE
30loss=tf.reduce_mean(tf.square(out-y))
31
32#优化器选择Adam
33train=tf.train.AdamOptimizer(0.01).minimize(loss)
34
35#开始训练,迭代1001次(方便后边的整数步数显示)
36with tf.Session as session:
37 session.run(tf.global_variables_initializer) #初始化变量
38 for i in range(1001):
39 session.run(train,feed_dict={x:X,y:Y}) #训练模型
40 loss_final=session.run(loss,feed_dict={x:X,y:Y}) #获取损失
41 if i%100==0:
42 print("step:%d loss:%2f" % (i,loss_final))
43 print("X: %r" % X)
44 print("pred_out: %r" % session.run(out,feed_dict={x:X}))
对照第三张图片理解代码更加直观,我们的隐藏层神经元功能就是将输入值和相应权重做矩阵乘法,然后加上偏移量,最后使用激活函数进行非线性转换;而输出层没有用到激活函数,因为本次我们不是进行分类或者其他操作,一般情况下隐藏层使用激活函数Relu,输出层若是分类则用sigmode,当然你也可以不用,本次实验只是单纯地做异或运算,那输出层就不劳驾激活函数了~
对于标准神经元内部的操作可理解为下图:
这里的x和w一般写成矩阵形式,因为大多数都是多个输入,而矩阵的乘积要满足一定的条件,这一点属于线代中最基础的部分,大家可以稍微了解一下,这里对设定权重的形状还是很重要的;
看下效果吧:
这是我们在学习率为0.1,迭代1001次的条件下得到的结果
然后我们学习率不变,迭代2001次,看效果:
没有改进,这就说明不是迭代次数的问题,我们还是保持2001的迭代数,将学习率改为0.01,看效果:
完美~~~最后损失降为0了~~一般来说,神经网络中的超参中最重要的就是学习率了,如果损失一直降不下来,我们首先要想到修改学习率,其他的超参次之……
大家可以观察一下我们的预测值,四项分别对应[0,1,1,0],已经是相当接近了……
原文:https://blog.csdn.net/beyond9305/article/details/98209549
声明:本文为 CSDN 博客精选文章,版权归作者所有。
【END】
相关推荐
- python入门到脱坑经典案例—清空列表
-
在Python中,清空列表是一个基础但重要的操作。clear()方法是最直接的方式,但还有其他方法也可以实现相同效果。以下是详细说明:1.使用clear()方法(Python3.3+推荐)...
- python中元组,列表,字典,集合删除项目方式的归纳
-
九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这四种集合数据类型,今天就对这四种集合数据类型中删除项目的操作做个总结性的归纳。列表(List)是一种有序和可更改的集合。允许重复...
- Linux 下海量文件删除方法效率对比,最慢的竟然是 rm
-
Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...
- 数据结构与算法——链式存储(链表)的插入及删除,
-
持续分享嵌入式技术,操作系统,算法,c语言/python等,欢迎小友关注支持上篇文章我们讲述了链表的基本概念及一些查找遍历的方法,本篇我们主要将一下链表的插入删除操作,以及采用堆栈方式如何创建链表。链...
- Python自动化:openpyxl写入数据,插入删除行列等基础操作
-
importopenpyxlwb=openpyxl.load_workbook("example1.xlsx")sh=wb['Sheet1']写入数据#...
- 在Linux下软件的安装与卸载(linux里的程序的安装与卸载命令)
-
通过apt安装/协助软件apt是AdvancedPackagingTool,是Linux下的一款安装包管理工具可以在终端中方便的安装/卸载/更新软件包命令使用格式:安装软件:sudoapt...
- Python 批量卸载关联包 pip-autoremove
-
pip工具在安装扩展包的时候会自动安装依赖的关联包,但是卸载时只删除单个包,无法卸载关联的包。pip-autoremove就是为了解决卸载关联包的问题。安装方法通过下面的命令安装:pipinsta...
- 用Python在Word文档中插入和删除文本框
-
在当今自动化办公需求日益增长的背景下,通过编程手段动态管理Word文档中的文本框元素已成为提升工作效率的关键技术路径。文本框作为文档排版中灵活的内容容器,既能承载多模态信息(如文字、图像),又可实现独...
- Python 从列表中删除值的多种实用方法详解
-
#Python从列表中删除值的多种实用方法详解在Python编程中,列表(List)是一种常用的数据结构,具有动态可变的特性。当我们需要从列表中删除元素时,根据不同的场景(如按值删除、按索引删除、...
- Python 中的前缀删除操作全指南(python删除前导0)
-
1.字符串前缀删除1.1使用内置方法Python提供了几种内置方法来处理字符串前缀的删除:#1.使用removeprefix()方法(Python3.9+)text="...
- 每天学点Python知识:如何删除空白
-
在Python中,删除空白可以分为几种不同的情况,常见的是针对字符串或列表中空白字符的处理。一、删除字符串中的空白1.删除字符串两端的空白(空格、\t、\n等)使用.strip()方法:s...
- Linux系统自带Python2&yum的卸载及重装
-
写在前面事情的起因是我昨天在测试Linux安装Python3的shell脚本时,需要卸载Python3重新安装一遍。但是通过如下命令卸载python3时,少写了个3,不小心将系统自带的python2也...
- 如何使用Python将多个excel文件数据快速汇总?
-
在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...
- 【第三弹】用Python实现Excel的vlookup功能
-
今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...
- python中pandas读取excel单列及连续多列数据
-
案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)