百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

excel数据处理需求,透视表无法解决?用Python吧

off999 2024-09-16 00:40 28 浏览 0 评论

请关注本号,后续会有更多相关教程。转发本文并私信我"python",即可获得按水平领域分类好的Python资料

系列文章

  1. "替代Excel Vba"系列(一):用Python的pandas快速汇总
  2. "Python替代Excel Vba"系列(二):pandas分组统计与操作Excel

前言

本系列前2篇已经稍微展示了 python 在数据处理方面的强大能力,这主要得益于 pandas 包的各种灵活处理方式。

但是身经百战的你肯定会觉得,前2篇例子中的数据太规范了,如果把数据导入到数据库还是可以方便解决问题的。

因此,本文将使用稍微复杂的数据做演示,充分说明 pandas 是如何灵活处理各种数据。

本文要点:

  • 使用 pandas 处理不规范数据。
  • pandas 中的索引。

注意:虽然本文是"Python替代Excel Vba"系列,但希望各位读者明白,工具都是各有所长,选择适合的工具,才是最好的。


案例

这次的数据是一个教师课程表。如下图:

  • 其中表格中的第3行是班级。诸如"一1",表示是一年级1班,最多8个年级。
  • 表格中的1至3列,分别表示"星期"、"上下午"、"第几节课"。
  • 前2列有大量的合并单元格,并且数据量不一致。比如星期一有9行,但星期二却只有7行。
  • 表格的主要内容是,每天每个班级的每堂课是什么课以及是哪位教师负责。诸如"语文xxx",表示这是语文课,由xxx老师负责。这里的名字按照原有数据做了脱敏。

这是典型的报表输出格式,其中有合并单元格,内容把科目和人名回到一起去。由于案例原有的需求比较繁琐,本文核心是处理数据,因此简化了需求。

不管我们的分析目的是什么,第一步就是要把这份数据整理好,才能应对各种分析。我们开始吧。


导入包

本文所需的包,安装命令如下:

pip install xlwings
pip install pandas
pip install numpy

建议你安装 anaconda ,那么最难安装的 pandas 和 numpy 都不会是问题。

脚本中导入


设定目标数据格式

我们需要得到最小维度的数据格式,即每天每个班的每节课是哪位老师负责的哪个科目。如下:

为了管理方便,下面会把每个环节的处理放入一个独立的方法中


加载数据

代码如下:

  • 由于这次的标题是从第3行开始,因此 wrk.range('a3').current_region 会导致内容包含了前2行。
  • .options(np.array),因此我们把整块数据加载到 numpy 的数组中。numpy 数组可以很方便做各种切片。
  • header=arr[2] , 取出第3行作为标题。注意索引是从0开始算。
  • values=arr[3:],从第4行往后一大片作为值。
  • pd.DataFrame(values,columns=header) , 生成一个 DataFrame 。
  • .replace(['/','nan'],np.nan),把读取进来的有些无效值替换为 nan,这是为了后续操作方便。

我们来看看数据:

  • 注意看左上角有3个 nan ,是因为表格的标题行前3列是空的。
  • 由于前2列有合并单元格,出现了很多 nan。
  • 此外注意看第3列,把课时序号显示成小数。

处理标题

pandas 的 DataFrame 最大的好处是,我们可以使用列名字操作数据,这样子就无需担心列的位置变化。因此需要把标题处理好。 代码如下:

  • cols=df.columns.tolist(),把 df 的字段拿出来。这是一个list
  • cols[:3]=['day','apm','num'] ,把列表的前3项的 nan ,替换成我们需要的字段名字。
  • df.columns=cols , 表示更新 df 的字段
  • df['num'].astype('float').astype('int') ,顺手把 num 字段的小数变整数。这里不能直接转整数,因为 python 怕有精度丢失,直接转换 int 会报错。因此先转 float,再转 int。

再次看看 数据,一切正常:


填充缺失

下一步就是把前2列的 nan 给填充正确。

  • df[cols]=df[cols].fillna(method='ffill') , fillna 方法即可填充 nan 。此外 pandas 中有各种内置的填充方式。 ffill 表示用上一个有效值填充。
  • 合并单元格很多时候就是第一个有值,其他为空,ffill 填充方式刚好适合这样的情况。

现在数据美如画了。

重塑

要理解 pandas 中的重塑,先要了解 DataFrame 的构成。 如下是一个 DataFrame 的组成部分:

  • 红框中的是 DataFrame 的值部分(values)
  • 上方深蓝色框中是 DataFrame 的列索引(columns),注意,为什么方框不是一行?是因为 DataFrame 允许多层次索引。类似于平时的复合表头。
  • 左方深蓝色框中是 DataFrame 的行索引(index)。本质上是与列索引一致,只是 index 用于定位行,columns 用于定位列。

不要被"多层次索引"这种词汇吓到,其实是我们经常遇到的东西。 下面来看看一个多层次索引的例子:

  • 上图的上方有3个层次的列索引,依次从上到下。
  • 上图的左方有2个层次的行索引,依次从左到右。
  • 我们平时操作 DataFrame 就是通过这两个玩意去定位里面的数据。

如果你熟悉 excel 中的透视表,那么完全可以把行列索引当作是透视表中的行列区域。


理解了索引,那么就要说一下如何变换行列索引。 pandas 中通过 stack 方法,可以把需要的列索引转成行索引。 用上面的数据作为例子,我们需要左边的行索引显示每天上下午的气温和降雨量。如下图:

  • 不妨在 excel 的透视表上操作一下,把一个放入列区域的字段移到行区域上,就是上图的结果。

回到我们的例子。我们需要把前3列放入行索引,然后把整个列索引移到行索引上。 代码如下:

  • .set_index(['day','apm','num']) , 把这3列放入行索引区域。
  • .stack() ,stack 方法默认把最后的列索引区域的最后一个列索引,移到行索引区域的最后。由于目前的 df 只有一个列索引,因此直接调用 stack 即可。
  • 此时,由于把唯一的列索引移走了,df 已经没有任何列索引!
  • .reset_index(-1) , 把最后的行索引移走,并成为单独的一列。
  • 到此,df 又重新有了一层列索引。

看看现在的数据,如下:


剩下的工作则非常简单,主要是把班级和内容分成2列。


数据如下:


最后

本文通过实例展示了如何在 Python 中使用 xlwings + pandas 灵活处理各种的不规范格式表格数据。这种方式尤其适合报表形式的数据。

[源码地址](https://github.com/CrystalWindSnake/Creative/tree/master/python/excel_pandas/3)

请关注本号,后续会有更多相关教程。

相关推荐

使用 python-fire 快速构建 CLI_如何搭建python项目架构

命令行应用程序是开发人员最好的朋友。想快速完成某事?只需敲击几下键盘,您就已经拥有了想要的东西。Python是许多开发人员在需要快速组合某些东西时选择的第一语言。但是我们拼凑起来的东西在大多数时候并...

Python 闭包:从底层逻辑到实战避坑,附安全防护指南

一、闭包到底是什么?你可以把闭包理解成一个"带记忆的函数"。它诞生时会悄悄记下自己周围的变量,哪怕跑到别的地方执行,这些"记忆"也不会丢失。就像有人出门时总会带上...

使用Python实现九九乘法表的打印_用python打印一个九九乘法表

任务要求九九乘法表的结构如下:1×1=11×2=22×2=41×3=32×3=63×3=9...1×9=92×9=18...9×9=81使用Python编写程序,按照上述格式打印出完整的九...

吊打面试官(四)--Java语法基础运算符一文全掌握

简介本文介绍了Java运算符相关知识,包含运算规则,运算符使用经验,特殊运算符注意事项等,全文5400字。熟悉了这些内容,在运算符这块就可以吊打面试官了。Java运算符的规则与特性1.贪心规则(Ma...

Python三目运算基础与进阶_python三目运算符判断三个变量

#头条创作挑战赛#Python中你学会了三步运算,你将会省去很多无用的代码,我接下来由基础到进阶的方式讲解Python三目运算基础在Python中,三目运算符也称为条件表达式。它可以通过一行代码实现条...

Python 中 必须掌握的 20 个核心函数——set()详解

set()是Python中用于创建集合的核心函数,集合是一种无序、不重复元素的容器,非常适合用于成员检测、去重和数学集合运算。一、set()的基本用法1.1创建空集合#创建空集合empty_se...

15个让Python编码效率翻倍的实用技巧

在软件开发领域,代码质量往往比代码数量更重要。本文整理的15个Python编码技巧,源自开发者在真实项目中验证过的工作方法,能够帮助您用更简洁的代码实现更清晰的逻辑。这些技巧覆盖基础语法优化到高级特性...

《Python从小白到入门》自学课程目录汇总(和猫妹学Python)

小朋友们好,大朋友们好!不知不觉,这套猫妹自学Python基础课程已经结束了,猫妹体会到了水滴石穿的力量。水一直向下滴,时间长了能把石头滴穿。只要坚持不懈,细微之力也能做出很难办的事。就比如咱们的学习...

8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……

近日,国外网友因为一道小学数学题在推特上争得热火朝天。事情的起因是一个推特网友@pjmdoll发布了一条推文,让他的关注者解答一道数学题:Viralmathequationshavebeen...

Python学不会来打我(21)python表达式知识点汇总

在Python中,表达式是由变量、运算符、函数调用等组合而成的语句,用于产生值或执行特定操作。以下是对Python中常见表达式的详细讲解:1.1算术表达式涉及数学运算的表达式。例如:a=5b...

Python运算符:数学助手,轻松拿咧

Python中的运算符就像是生活中的数学助手,帮助我们快速准确地完成这些计算。比如购物时计算总价、做家务时分配任务等。这篇文章就来详细聊聊Python中的各种运算符,并通过实际代码示例帮助你更好地理解...

Python学不会来打我(17)逻辑运算符的使用方法与使用场景

在Python编程中,逻辑运算符(LogicalOperators)是用于组合多个条件表达式的关键工具。它们可以将多个布尔表达式连接起来,形成更复杂的判断逻辑,并返回一个布尔值(True或Fa...

Python编程基础:运算符的优先级_python中的运算符优先级问题

多个运算符同时出现在一个表达式中时,先执行哪个,后执行哪个,这就涉及运算符的优先级。如数学表达式,有+、-、×、÷、()等,优先级顺序是()、×、÷、+、-,如5+(5-3)×4÷2,先计算(5-3)...

Python运算符与表达式_python中运算符&的功能

一、运算符分类总览1.Python运算符全景图2.运算符优先级表表1.3.1Python运算符优先级(从高到低)优先级运算符描述结合性1**指数右→左2~+-位非/一元加减右→左3*//...

Python操作Excel:从基础到高级的深度实践

Python凭借其丰富的库生态系统,已成为自动化处理Excel数据的强大工具。本文将深入探讨五个关键领域,通过实际代码示例展示如何利用Python进行高效的Excel操作,涵盖数据处理、格式控制、可视...

取消回复欢迎 发表评论: