强烈推荐!8个让 pandas 更高效的 option 设置
off999 2024-10-17 11:42 25 浏览 0 评论
通过pandas的使用,我们经常要交互式地展示表格(dataframe)、分析表格。而表格的格式就显得尤为重要了,因为大部分时候如果我们直接展示表格,格式并不是很友好。
其实呢,这些痛点都可以通过pandas的option来解决。短短几行代码,只要提前配置好,一次设置好,全局生效,perfect!
# 使用方法
import pandas as pd
pd.set_option()
pd.get_option()
# 使用属性,例如展示的最大行数
pd.option.display.max_rows
东哥整理了8个常用的配置选项,供大家参考。记住这8个option代码,下次直接粘贴进去,效率可以提高很多,爽歪歪。
- 显示更多行
- 显示更多列
- 改变列宽
- 设置float列的精度
- 数字格式化显示
- 更改绘图方法
- 配置info()的输出
- 打印出当前设置并重置所有选项
1. 显示更多行
默认情况下,pandas 是不超出屏幕的显示范围的,如果表的行数很多,它会截断中间的行只显示一部分。我们可以通过设置display.max_rows来控制显示的最大行数,比如我想设置显示200行。
pd.set_option('display.max_rows', 200)
# pd.options.display.max_rows = 200
如果行数超过了display.max_rows,那么display.min_rows将确定显示的部分有多少行。因为display.min_rows的默认行数为5,,下面例子只显示前5行和最后5行,中间的所有行省略。
同理,也可根据自己的习惯显示可显示的行数,比如10, 20..
pd.set_option('display.min_rows', 10)
# pd.options.display.min_rows = 10
还可以直接重置。
# 重置
pd.reset_option('display.max_rows')
2. 显示更多列
行可以设置,同样的列也可以设置,display.max_columns控制着可显示的列数,默认值为20。
pd.get_option('display.max_columns')
# pd.options.display.max_columns
20
3. 改变列宽
pandas对列中显示的字符数有一些限制,默认值为50字符。所以,有的值字符过长就会显示省略号。如果想全部显示,可以设置display.max_colwidth,比如设置成500。
pd.set_option ('display.max_colwidth',500)
# pd.options.display.max_colwidth = 500
4. 设置float列的精度
对于float浮点型数据,pandas默认情况下只显示小数点后6位。我们可以通过预先设置display.precision让其只显示2位,避免后面重复操作。
pd.set_option( 'display.precision',2)
# pd.options.display.precision = 2
这个设置不影响底层数据,它只影响浮动列的显示。
5. 数字格式化显示
pandas中有一个选项display.float_formatoption可以用来格式化任何浮点列。这个仅适用于浮点列,对于其他数据类型,必须将它们转换为浮点数才可以。
用逗号格式化大值数字
例如 1200000 这样的大数字看起来很不方便,所以我们用逗号进行分隔。
pd.set_option('display.float_format','{:,}'.format)
设置数字精度
和上面display.precision有点类似,假如我们只关心小数点后的2位数字,我们可以这样设置格式化:
pd.set_option('display.float_format', '{:,.2f}'.format)
百分号格式化
如果我们要显示一个百分比的列,可以这样设置。
pd.set_option('display.float_format', '{:.2f}%'.format)
或者其它币种的符号等均可,只需要在大括号{}前后添加即可。
6. 更改绘图方法
默认情况下,pandas使用matplotlib作为绘图后端。从 0.25 版本开始,pandas提供了使用不同后端选择,比如plotly,bokeh等第三方库,但前提是你需要先安装起来。
这个东哥之前也分享过设置后端可视化方法的内容:再见,可视化!你好,pandas!
设置很简单,只要安装好三方库后,同样只需要一行。
import pandas as pd
import numpy as np
pd.set_option('plotting.backend', 'altair')
data = pd.Series(np.random.randn(100).cumsum())
data.plot()
7. 配置info()的输出
pandas中我们经常要使用info()来快速查看DataFrame的数据情况。但是,info这个方法对要分析的最大列数是有默认限制的,并且如果数据集中有null,那么在大数据集计数统计时会非常慢。
pandas提供了两种选择:
- display.max_info_columns: 设置要分析的最大列数,默认为100。
- display.max_info_rows: 设置计数null时的阈值,默认为1690785。
比如,在分析有 150 个特征的数据集时,我们可以设置display.max_info_columns为涵盖所有列的值,比如将其设置为 200:
pd.set_option('display.max_info_columns', 200)
在分析大型数据集时,df.info()由于要计算所有null,导致速度很慢。因此我们可以简单地设置display.max_info_rows为一个小的值来避免计数,例如只在行数不超过5时才计数null:
pd.set_option('display.max_info_rows', 5)
8. 打印出当前设置并重置所有选项
pd.describe_option()将打印出设置的描述及其当前值。
pd.describe_option()
还可以打印特定的选项,例如,行显示。
# 具体的搜索
pd.describe_option('rows')
最后,我们还可以直接全部重置。
pd.reset_option('all')
以上就是8个常用set_option的使用,下面进行了汇总,方便大家粘贴使用。
pd.set_option('display.max_rows',xxx) # 最大行数
pd.set_option('display.min_rows',xxx) # 最小显示行数
pd.set_option('display.max_columns',xxx) # 最大显示列数
pd.set_option ('display.max_colwidth',xxx) #最大列字符数
pd.set_option( 'display.precision',2) # 浮点型精度
pd.set_option('display.float_format','{:,}'.format) #逗号分隔数字
pd.set_option('display.float_format', '{:,.2f}'.format) #设置浮点精度
pd.set_option('display.float_format', '{:.2f}%'.format) #百分号格式化
pd.set_option('plotting.backend', 'altair') # 更改后端绘图方式
pd.set_option('display.max_info_columns', 200) # info输出最大列数
pd.set_option('display.max_info_rows', 5) # info计数null时的阈值
pd.describe_option() #展示所有设置和描述
pd.reset_option('all') #重置所有设置选项
原创不易,欢迎点赞、留言、分享,支持我继续写下去。
参考:
[1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html
[2] https://towardsdatascience.com/8-commonly-used-pandas-display-options-you-should-know-a832365efa95
相关推荐
- Alist 玩家请进:一键部署全新分支 Openlist,看看香不香!
-
Openlist(其前身是鼎鼎大名的Alist)是一款功能强大的开源文件列表程序。它能像“万能钥匙”一样,解锁并聚合你散落在各处的云盘资源——无论是阿里云盘、百度网盘、GoogleDrive还是...
- 白嫖SSL证书还自动续签?这个开源工具让我告别手动部署
-
你还在手动部署SSL证书?你是不是也遇到过这些问题:每3个月续一次Let'sEncrypt证书,忘了就翻车;手动配置Nginx,重启服务,搞一次SSL得花一下午;付费证书太贵,...
- Docker Compose:让多容器应用一键起飞
-
CDockerCompose:让多容器应用一键起飞"曾经我也是一个手动启动容器的少年,直到我的膝盖中了一箭。"——某位忘记--link参数的运维工程师引言:容器化的烦恼与...
- 申请免费的SSL证书,到期一键续签
-
大家好,我是小悟。最近帮朋友配置网站HTTPS时发现,还有人对宝塔面板的SSL证书功能还不太熟悉。其实宝塔早就内置了免费的Let'sEncrypt证书申请和一键续签功能,操作简单到连新手都能...
- 飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
前面分享了两期TVGate:Q大的转发代理工具TVGate升级了,操作更便捷,增加了新的功能跨平台内网转发神器TVGate部署与使用初体验现在项目已经开源,并支持Docker部署,本文介绍如何通...
- Docker Compose 编排实战:一键部署多容器应用!
-
当项目变得越来越复杂,一个服务已经无法满足需求时,你可能需要同时部署数据库、后端服务、前端网页、缓存组件……这时,如果还一个一个手动dockerrun,简直是灾难这就是DockerCompo...
- 深度测评:Vue、React 一键部署的神器 PinMe
-
不知道大家有没有这种崩溃瞬间:领导突然要看项目Demo,客户临时要体验新功能,自己写的小案例想发朋友圈;找运维?排期?还要走工单;自己买服务器?域名、SSL、Nginx、防火墙;本地起服务?断电、关...
- 超简单!一键启动多容器,解锁 Docker Compose 极速编排秘籍
-
想要用最简单的方式在本地复刻一套完整的微服务环境?只需一个docker-compose.yml文件,你就能一键拉起N个容器,自动组网、挂载存储、环境隔离,全程无痛!下面这份终极指南,教你如何用...
- 日志文件转运工具Filebeat笔记_日志转发工具
-
一、概述与简介Filebeat是一个日志文件转运工具,在服务器上以轻量级代理的形式安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并将来自...
- K8s 日志高效查看神器,提升运维效率10倍!
-
通常情况下,在部署了K8S服务之后,为了更好地监控服务的运行情况,都会接入对应的日志系统来进行检测和分析,比如常见的Filebeat+ElasticSearch+Kibana这一套组合...
- 如何给网站添加 https_如何给网站添加证书
-
一、简介相信大家都知道https是更加安全的,特别是一些网站,有https的网站更能够让用户信任访问接下来以我的个人网站五岁小孩为例子,带大家一起从0到1配置网站https本次配置的...
- 10个Linux文件内容查看命令的实用示例
-
Linux文件内容查看命令30个实用示例详细介绍了10个Linux文件内容查看命令的30个实用示例,涵盖了从基本文本查看、分页浏览到二进制文件分析的各个方面。掌握这些命令帮助您:高效查看各种文本文件内...
- 第13章 工程化实践_第13章 工程化实践课
-
13.1ESLint+Prettier代码规范统一代码风格配置//.eslintrc.jsmodule.exports={root:true,env:{node...
- 龙建股份:工程项目中标_龙建股份有限公司招聘网
-
404NotFoundnginx/1.6.1【公告简述】2016年9月8日公告,公司于2016年9月6日收到苏丹共和国(简称“北苏丹”)喀土穆州基础设施与运输部公路、桥梁和排水公司出具的中标通知书...
- 福田汽车:获得政府补助_福田 补贴
-
404NotFoundnginx/1.6.1【公告简述】2016年9月1日公告,自2016年8月17日至今,公司共收到产业发展补助、支持资金等与收益相关的政府补助4笔,共计5429.08万元(不含...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)