百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

强烈推荐!8个让 pandas 更高效的 option 设置

off999 2024-10-17 11:42 17 浏览 0 评论

通过pandas的使用,我们经常要交互式地展示表格(dataframe)、分析表格。而表格的格式就显得尤为重要了,因为大部分时候如果我们直接展示表格,格式并不是很友好。

其实呢,这些痛点都可以通过pandasoption来解决。短短几行代码,只要提前配置好,一次设置好,全局生效,perfect!

# 使用方法
import pandas as pd
pd.set_option()
pd.get_option()

# 使用属性,例如展示的最大行数
pd.option.display.max_rows

东哥整理了8个常用的配置选项,供大家参考。记住这8个option代码,下次直接粘贴进去,效率可以提高很多,爽歪歪。

  • 显示更多行
  • 显示更多列
  • 改变列宽
  • 设置float列的精度
  • 数字格式化显示
  • 更改绘图方法
  • 配置info()的输出
  • 打印出当前设置并重置所有选项

1. 显示更多行

默认情况下,pandas 是不超出屏幕的显示范围的,如果表的行数很多,它会截断中间的行只显示一部分。我们可以通过设置display.max_rows来控制显示的最大行数,比如我想设置显示200行。

pd.set_option('display.max_rows', 200)
# pd.options.display.max_rows = 200

如果行数超过了display.max_rows,那么display.min_rows将确定显示的部分有多少行。因为display.min_rows的默认行数为5,,下面例子只显示前5行和最后5行,中间的所有行省略。

同理,也可根据自己的习惯显示可显示的行数,比如10, 20..

pd.set_option('display.min_rows', 10)
# pd.options.display.min_rows = 10

还可以直接重置。

# 重置
pd.reset_option('display.max_rows')

2. 显示更多列

行可以设置,同样的列也可以设置,display.max_columns控制着可显示的列数,默认值为20。

pd.get_option('display.max_columns') 
# pd.options.display.max_columns
20

3. 改变列宽

pandas对列中显示的字符数有一些限制,默认值为50字符。所以,有的值字符过长就会显示省略号。如果想全部显示,可以设置display.max_colwidth,比如设置成500。

pd.set_option ('display.max_colwidth',500)
# pd.options.display.max_colwidth = 500

4. 设置float列的精度

对于float浮点型数据,pandas默认情况下只显示小数点后6位。我们可以通过预先设置display.precision让其只显示2位,避免后面重复操作。

pd.set_option( 'display.precision',2)
# pd.options.display.precision = 2

这个设置不影响底层数据,它只影响浮动列的显示。

5. 数字格式化显示

pandas中有一个选项display.float_formatoption可以用来格式化任何浮点列。这个仅适用于浮点列,对于其他数据类型,必须将它们转换为浮点数才可以。

用逗号格式化大值数字

例如 1200000 这样的大数字看起来很不方便,所以我们用逗号进行分隔。

pd.set_option('display.float_format','{:,}'.format)

设置数字精度

和上面display.precision有点类似,假如我们只关心小数点后的2位数字,我们可以这样设置格式化:

pd.set_option('display.float_format',  '{:,.2f}'.format)

百分号格式化

如果我们要显示一个百分比的列,可以这样设置。

pd.set_option('display.float_format', '{:.2f}%'.format)

或者其它币种的符号等均可,只需要在大括号{}前后添加即可。

6. 更改绘图方法

默认情况下,pandas使用matplotlib作为绘图后端。从 0.25 版本开始,pandas提供了使用不同后端选择,比如plotlybokeh等第三方库,但前提是你需要先安装起来。

这个东哥之前也分享过设置后端可视化方法的内容:再见,可视化!你好,pandas!

设置很简单,只要安装好三方库后,同样只需要一行。

import pandas as pd
import numpy as np
pd.set_option('plotting.backend', 'altair')
data = pd.Series(np.random.randn(100).cumsum())
data.plot()

7. 配置info()的输出

pandas中我们经常要使用info()来快速查看DataFrame的数据情况。但是,info这个方法对要分析的最大列数是有默认限制的,并且如果数据集中有null,那么在大数据集计数统计时会非常慢。

pandas提供了两种选择:

  • display.max_info_columns: 设置要分析的最大列数,默认为100。
  • display.max_info_rows: 设置计数null时的阈值,默认为1690785。

比如,在分析有 150 个特征的数据集时,我们可以设置display.max_info_columns为涵盖所有列的值,比如将其设置为 200:

pd.set_option('display.max_info_columns', 200)

在分析大型数据集时,df.info()由于要计算所有null,导致速度很慢。因此我们可以简单地设置display.max_info_rows为一个小的值来避免计数,例如只在行数不超过5时才计数null

pd.set_option('display.max_info_rows', 5)

8. 打印出当前设置并重置所有选项

pd.describe_option()将打印出设置的描述及其当前值。

pd.describe_option()

还可以打印特定的选项,例如,行显示。

# 具体的搜索
pd.describe_option('rows')

最后,我们还可以直接全部重置。

pd.reset_option('all')

以上就是8个常用set_option的使用,下面进行了汇总,方便大家粘贴使用。

pd.set_option('display.max_rows',xxx) # 最大行数
pd.set_option('display.min_rows',xxx) # 最小显示行数
pd.set_option('display.max_columns',xxx) # 最大显示列数
pd.set_option ('display.max_colwidth',xxx) #最大列字符数
pd.set_option( 'display.precision',2) # 浮点型精度
pd.set_option('display.float_format','{:,}'.format) #逗号分隔数字
pd.set_option('display.float_format',  '{:,.2f}'.format) #设置浮点精度
pd.set_option('display.float_format', '{:.2f}%'.format) #百分号格式化
pd.set_option('plotting.backend', 'altair') # 更改后端绘图方式
pd.set_option('display.max_info_columns', 200) # info输出最大列数
pd.set_option('display.max_info_rows', 5) # info计数null时的阈值
pd.describe_option() #展示所有设置和描述
pd.reset_option('all') #重置所有设置选项

原创不易,欢迎点赞、留言、分享,支持我继续写下去。

参考:

[1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html

[2] https://towardsdatascience.com/8-commonly-used-pandas-display-options-you-should-know-a832365efa95

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: