百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python 速度慢,试试这个方法提高 1000 倍

off999 2024-09-13 13:30 27 浏览 0 评论

作者 | Andrew Zhu
译者 | 苏本如
出品 | CSDN(ID:CSDNnews)

龟兔比赛(我6岁儿子 Charles Zhu 的绘画作品)


人们一直诟病 Python 程序的速度很慢,它到底有多慢呢?


在每次的编程语言速度竞赛中,Python 的名次通常都比较垫底。有人解释这是因为 Python 是一种解释型语言(代码无需编译即可执行),而所有的解释型编程语言执行速度都很慢。然而,我们知道 Java 也是一种解释型语言,它的字节码是由 JVM 解释的。而在这个基准测试速度比较页面上的结果却显示:Java 要比 Python 的速度快得多。

下面是一个可以用来演示 Python 速度慢的示例。它使用传统的 for 循环来产生一个数的倒数:

import numpy as npnp.random.seed(0)values = np.random.randint(1, 100, size=1000000)def get_reciprocal(values):output = np.empty(len(values))for i in range(len(values)):output[i] = 1.0/values[i]%timeit get_reciprocal(values)

结果显示:

每个循环平均耗时3.37秒(标准偏差±582毫秒)(共计运行了7次程序,每次一个循环)

计算 1,000,000 个倒数竟然需要 3.37 秒。使用 C 语言执行同样的运算只需要不到一眨眼的工夫:9 毫秒;C# 需要 19 毫秒;Nodejs 需要 26 毫秒;Java 仅仅需要 5 毫秒!而 Python 竟然用了让人怀疑人生的 3.37秒(它到底做了些什么)!(注:在本文的最后,我附上了所有语言的测试代码)。


Python 速度缓慢的根本原因


我们通常把 Python 称为一种动态类型编程语言。而 Python 程序中的一切变量都是以对象的形式存在,换句话说,每次 Python 代码处理数据时,都需要进行对象拆箱操作,以确定对象的具体类型。在 for 循环内部,每次循环都需要拆箱对象,检查类型并计算倒数。那3秒钟的时间都在类型检查中浪费了。

C 语言和其他传统的编程语言则不同,它们对数据的访问是直接的。但在 Python 中,大量的 CPU 时间都用在了类型检查上。

即使是一个简单的赋值操作也会花费很长的时间。如:

a = 1

这个简单的赋值操作,它需要如下两个步骤:

  • 步骤 1:将 a->PyObject_HEAD->typecode 设置为 Integer 类型.

  • 步骤 2. 将值 1 赋值 a (a->val =1).

关于 Python 为什么速度慢的更多信息,Jake 写的这篇精彩文章值得一读:Why Python is Slow: Looking Under the Hood

那么,有没有一种方法可以绕过类型检查,从而提高 Python 程序的性能呢?


答案是:使用 NumPy 通用函数


与 Python 列表(list)不同,NumPy 数组是围绕 C 数组构建的对象。NumPy 数组访问项不需要任何步骤来检查类型。这给我们找到解决方案指明了方向:使用 NumPy 通用函数(亦即UFunc)。

简而言之,UFunc 是一种可以直接对整个数组进行算术运算的方法。下面我们将前面那个慢速的 Python 示例改写为 UFunc 版本,它就像下面这样:

import numpy as npnp.random.seed(0)values = np.random.randint(1, 100, size=1000000)%timeit result = 1.0/values

改写后的代码不仅提高了速度,而且代码变得更短。猜猜现在这个程序执行要花多少时间?它比我上面提到的最快的语言快了2.7毫秒

每个循环平均耗时2.71毫秒(标准偏差±50.8微秒)(共运行了7次程序,每次循环100个)

返回代码,关键是 1.0/values 这一行。这里的 values 不是一个数字,而是一个 NumPy 数组。和除法运算符一样,Numpy 还有许多其他运算符(如下图示)。

点击这里可以找到所有 Ufunc 运算(操作)符。


总结


对于那些使用 Python 的人来说,使用 Python 处理数据和数字的可能性很大。这些数据可以存储在 NumPy 或 Pandas DataFrame中,因为DataFrame 是基于 NumPy 实现的。所以 Ufunc 也可以使用。

UFunc 使我们能够以超越几个数量级的更快速度在 Python 中执行重复操作。最慢的 Python 甚至可以跑得 C 语言更快。这一点太让人激动了。


附录— C,C#,Java 和 NodeJS 的测试代码


C 语言:

#include <stdio.h>#include <stdlib.h>#include <sys/time.h>
int main(){ struct timeval stop, start; int length = 1000000; int rand_array[length]; float output_array[length]; for(int i = 0; i<length; i++){ rand_array[i] = rand(); } gettimeofday(&start, ); for(int i = 0; i<length; i++){ output_array[i] = 1.0/(rand_array[i]*1.0); } gettimeofday(&stop, ); printf("took %lu us\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec - start.tv_usec); printf("done\n"); return 0;}

C#(.net 5.0):

using System;namespace speed_test{ class Program{ static void Main(string[] args){ int length = 1000000; double[] rand_array =new double[length]; double[] output = new double[length]; var rand = new Random(); for(int i =0; i<length;i++){ rand_array[i] = rand.Next(); //Console.WriteLine(rand_array[i]); } long start = DateTimeOffset.Now.ToUnixTimeMilliseconds(); for(int i =0;i<length;i++){ output[i] = 1.0/rand_array[i]; } long end = DateTimeOffset.Now.ToUnixTimeMilliseconds(); Console.WriteLine(end - start); } }}

Java:

import java.util.Random;
public class speed_test { public static void main(String[] args){ int length = 1000000; long[] rand_array = new long[length]; double[] output = new double[length]; Random rand = new Random (); for(int i =0; i<length; i++){ rand_array[i] = rand.nextLong(); } long start = System.currentTimeMillis(); for(int i = 0;i<length; i++){ output[i] = 1.0/rand_array[i]; } long end = System.currentTimeMillis(); System.out.println(end - start); }}

NodeJS:

let length = 1000000;let rand_array = [];let output = [];for(var i=0;i<length;i++){ rand_array[i] = Math.floor(Math.random()*10000000);}let start = (new Date()).getMilliseconds();for(var i=0;i<length;i++){ output[i] = 1.0/rand_array[i];}let end = (new Date()).getMilliseconds();console.log(end - start);

原文链接:https://python.plainenglish.io/a-solution-to-boost-python-speed-1000x-times-c9e7d5be2f40

声明:本文由CSDN翻译,转载请注明来源.

4月20日晚八点,欢迎来到CSDN悦读时间直播间,与四位大咖一起探索UNIX传奇往事的启示,围观《UNIX传奇》新书发布会!


相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: