5 行代码实现图像分割(图像分割算法的源代码实现结果图)
off999 2024-10-20 08:06 28 浏览 0 评论
本文来自量子位
图像分割,作为计算机视觉的基础,是图像理解的重要组成部分,也是图像处理的难点之一。
那么,如何优雅且体面的图像分割?
5行代码、分分钟实现的库——PixelLib,了解一下。
当然,如此好用的项目,开源是必须的。
为什么要用到图像分割?
虽然计算机视觉研究工作者,会经常接触图像分割的问题,但是我们还是需要对其做下“赘述”(方便初学者)。
我们都知道每个图像都是有一组像素值组成。简单来说,图像分割就是在像素级上,对图像进行分类的任务。
图像分割中使用的一些“独门秘技”,使它可以处理一些关键的计算机视觉任务。主要分为2类:
语义分割:就是把图像中每个像素赋予一个类别标签,用不同的颜色来表示。
实例分割:它不需要对每个像素进行标记,它只需要找到感兴趣物体的边缘轮廓就行。
它的身影也经常会出现在比较重要的场景中:
无人驾驶汽车视觉系统,可以有效的理解道路场景。
医疗图像分割,可以帮助医生进行诊断测试。
卫星图像分析,等等。
所以,图像分割技术的应用还是非常重要的。
接下来,我们就直奔主题,开始了解一下PixelLib,这个神奇又好用的库。
快速安装PixelLib
PixelLib这个库可以非常简单的实现图像分割——5行代码就可以实现语义分割和实例分割。
老规矩,先介绍一下安装环境。
安装最新版本的TensorFlow、Pillow、OpenCV-Python、scikit-image和PixelLib:
pip3 install tensorflow
pip3 install pillow
pip3 install opencv-python
pip3 install scikit-image
pip3 install pixellib
PixelLib实现语义分割
PixelLib在执行语义分割任务时,采用的是Deeplabv3+框架,以及在pascalvoc上预训练的Xception模型。
用在pascalvoc上预训练的Xception模型执行语义分割:
import pixellib
from pixellib.semantic import semantic_segmentation
segment_image = semantic_segmentation
segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)
segment_image.segmentAsPascalvoc(“path_to_image”, output_image_name = “path_to_output_image”)
让我们看一下每行代码:
import pixellib
from pixellib.semantic import semantic_segmentation
#created an instance of semantic segmentation class
segment_image = semantic_segmentation
用于执行语义分割的类,是从pixellib导入的,创建了一个类的实例。
segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)
调用函数来加载在pascal voc上训练的xception模型(xception模型可以从文末传送门链接处下载)。
segment_image.segmentAsPascalvoc(“path_to_image”, output_image_name = “path_to_output_image”)
这是对图像进行分割的代码行,这个函数包含了两个参数:
path_to_image:图像被分割的路径。
path_to_output_image:保存输出图像的路径,图像将被保存在你当前的工作目录中。
接下来,上图,实战!
图像文件命名为:sample1.jpg,如下图所示。
执行代码如下:
import pixellib
from pixellib.semantic import semantic_segmentation
segment_image = semantic_segmentation
segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)
segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name = “image_new.jpg”)
可以看到,在执行代码后,保存的图像中,所有对象都被分割了。
也可以对代码稍作修改,获取一张带有目标对象分割重叠(segmentation overlay)的图像。
segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name = “image_new.jpg”, overlay = True)
添加了一个额外的参数,并设置为True,就生成了带有分隔叠加的图像。
可以通过修改下面的代码,来检查执行分割所需的推理时间。
import pixellib
from pixellib.semantic import semantic_segmentation
import time
segment_image = semantic_segmentation
segment_image.load_pascalvoc_model(“pascal.h5”)
start = time.time
segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name= “image_new.jpg”)
end = time.time
print(f”Inference Time: {end-start:.2f}seconds”)
输出如下:
Inference Time: 8.19seconds
可以看到,在图像上执行语义分割,只用了8.19秒。
这个xception模型是用pascalvoc数据集训练的,有20个常用对象类别。
对象及其相应的color map如下所示:
PixelLib实现实例分割
虽然语义分割的结果看起来还不错,但在图像分割的某些特定任务上,可能就不太理想。
在语义分割中,相同类别的对象被赋予相同的colormap,因此语义分割可能无法提供特别充分的图像信息。
于是,便诞生了实例分割——同一类别的对象被赋予不同的colormap。
PixelLib在执行实例分割时,基于的框架是Mask RCNN,代码如下:
import pixellib
from pixellib.instance import instance_segmentation
segment_image = instance_segmentation
segment_image.load_model(“mask_rcnn_coco.h5”)
segment_image.segmentImage(“path_to_image”, output_image_name = “output_image_path”)
同样,我们先来拆解一下每行代码。
import pixellib
from pixellib.instance import instance_segmentation
segment_image = instance_segmentation
导入了用于执行实例分割的类,创建了该类的一个实例。
segment_image.load_model(“mask_rcnn_coco.h5”)
这是加载 Mask RCNN 模型来执行实例分割的代码(Mask RCNN模型可以从文末传送门链接处下载)。
segment_image.segmentImage(“path_to_image”, output_image_name = “output_image_path”)
这是对图像进行实例分割的代码,它需要两个参数:
path_to_image:模型所要预测图像的路径。
output_image_name:保存分割结果的路径,将被保存在当前的工作目录中。
上图,实战第二弹!
图像文件命名为:sample2.jpg,如下图所示。
执行代码如下:
import pixellib
from pixellib.instance import instance_segmentation
segment_image = instance_segmentation
segment_image.load_model(“mask_rcnn_coco.h5”)
segment_image.segmentImage(“sample2.jpg”, output_image_name = “image_new.jpg”)
上图便是保存到目录的图片,现在可以看到语义分割和实例分割之间的明显区别——在实例分割中,同一类别的所有对象,都被赋予了不同的colormap。
若是想用边界框(bounding box)来实现分割,可以对代码稍作修改:
segment_image.segmentImage(“sample2.jpg”, output_image_name = “image_new.jpg”, show_bboxes = True)
这样,就可以得到一个包含分割蒙版和边界框的保存图像。
同样的,也可以通过代码查询实例分割的推理时间:
import pixellib
from pixellib.instance import instance_segmentation
import time
segment_image = instance_segmentation
segment_image.load_model(“mask_rcnn_coco.h5”)
start = time.time
segment_image.segmentImage(“former.jpg”, output_image_name= “image_new.jpg”)
end = time.time
print(f”Inference Time: {end-start:.2f}seconds”)
输出结果如下:
Inference Time: 12.55 seconds
可以看到,在图像上执行实例分割,需要12.55秒的时间。
传送门
PixelLib项目地址:https://github.com/ayoolaolafenwa/PixelLib
相关推荐
- ipv6无网络访问权限怎么解决
-
ipv6无网络访问权限解决方法如下1、点击电脑左下角的开始,进入到开始的菜单栏,在菜单栏中找到“运行”。或者通过快捷键Windows+R打开运行窗口。 2、打开运行的窗口页面后,在页面上输入“CMD...
- office ltsc版(Office LTSC版本区别)
-
office2021和2021ltsc的区别如下:1.更新策略不同。前者采用每个月月度更新的方法,提供功能更新、安全更新。后者不采用每个月月度更新的方法,且不提供功能更新。2.界面不同。2021采用了...
- 安装win7需要激活吗(现在安装win7旗舰版还需密钥吗)
-
要激活 Windows7如果是预装在计算机中的,买来之后便不用激活,这里预装指的是在厂商那里。正版的Windows7安装到计算机中,有三十天的试用期,若要永久使用,就要使...
- originos 3升级计划公布(originos升级包)
-
2023年2月。1.OriginOS3.0系统第一批升级时间为11月25日。2、包含iQOONeo7,X80系列,S15系列,iQOO9、iQOO10系列,以及折叠屏XFold系列和大屏XNo...
- 鸿蒙系统适配第三方机型(鸿蒙 第三方适配)
-
最新华为官方公布了鸿蒙系统3.0支持的机型名单,具体如下。鸿蒙系统3.0升级名单:1.Mate系列:MateXs2、MateX2、MateXs、Mate40、Mate40Pro、Mate...
- imei怎么下载(imei changer apk)
-
如果您的steam序列号激活了,可以尝试以下方法下载:1.使用steam自带的下载工具,如“下载工具”,在软件的“下载”选项卡中选择“序列号下载”。2.在下载页面中,选择要下载的游戏,然后点击“下...
- 电脑系统优化软件哪个好(系统优化软件排行榜)
-
有必要用,非常好用,WINDOWS优化大师是一个网络上下载率极高的系统维护软件。多年未曾清理过系统和硬盘的电脑,系统内部将产生大量的垃圾文件、临时文件、废旧程序等等win10系统不需要经常更新,关闭...
- 重装系统后硬盘不见了(重装系统后磁盘不见了)
-
硬盘不见可能是因为重装系统时未正确安装驱动程序或未对硬件进行正确设置。你可以按以下步骤排查问题:进入BIOS检查硬盘是否被识别,尝试重新连接数据线和电源线,更新或安装适当的硬件驱动程序,或者使用硬件故...
- 冰封u盘装win7系统教程图解(冰封u盘启动装机教程)
-
1.查找激活工具:通常来说,Win7冰封系统已经包含了必要的驱动,所以如果你的电脑上并没有出现设备错误,那你就可以正常使用。如果你需要添加任何驱动,请尝试从厂商下载相应的驱动并执行自动安装程序。如果...
- uefi模式下找不到硬盘(uefi引导找不到硬盘)
-
首先你的安装盘必须是从UEFI启动的,然后它才能安装为UEFI启动。(条件:Fat32文件系统,efi文件夹)其次你MBR+BIOS的系统想换成GPT+EFI的,分区得做一点改动,腾出来100M的空...
- win7怎么安装蓝牙驱动程序(win7电脑安装蓝牙驱动教程)
-
方法如下: 1、再开始里点击控制版面,点击【硬件和声音】找到【添加设备】 2、之后再选择你要添加的蓝牙耳机。 3、系统就会提示正在与蓝牙适配器连接,然后提示添加成功。 4、点击“开始”-“...
- 怎么装系统win7旗舰版(电脑怎么装win7旗舰版)
-
1、目前支持64位的Wincc版本有:WinccV7Sp3、WinccV11Sp2、WinccV12。2、Wincc的V11与V12两个版本不能共存,即不能同时安装在同一台电脑上。上述这两...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
