Python人脸识别技术及人脸识别过程解析
off999 2024-10-20 08:08 20 浏览 0 评论
一、环境搭建
1.系统环境
Ubuntu 17.04
Python 2.7.14
pycharm 开发工具
2.开发环境,安装各种系统包
人脸检测基于dlib,dlib依赖Boost和cmake
在windows中如果要使用dlib还是比较麻烦的,如果想省时间可以在anaconda中安装
conda install -c conda-forge dlib=19.4
$ sudo apt-get install build-essential cmake
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev
其他重要的包
$ pip install numpy
$ pip install scipy
$ pip install opencv-python
$ pip install dlib
安装 face_recognition
# 安装 face_recognition
$ pip install face_recognition
# 安装face_recognition过程中会自动安装 numpy、scipy 等
二、使用教程
1、facial_features文件夹
此demo主要展示了识别指定图片中人脸的特征数据,下面就是人脸的八个特征,我们就是要获取特征数据
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
运行结果:
自动识别图片中的人脸,并且识别它的特征
原图:
特征数据,数据就是运行出来的矩阵,也就是一个二维数组
代码:
# -*- coding: utf-8 -*-
# 自动识别人脸特征
# filename : find_facial_features_in_picture.py
# 导入pil模块 ,可用命令安装 apt-get install python-Imaging
from PIL import Image, ImageDraw
# 导入face_recogntion模块,可用命令安装 pip install face_recognition
import face_recognition
# 将jpg文件加载到numpy 数组中
image = face_recognition.load_image_file("chenduling.jpg")
#查找图像中所有面部的所有面部特征
face_landmarks_list = face_recognition.face_landmarks(image)
print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))
for face_landmarks in face_landmarks_list:
#打印此图像中每个面部特征的位置
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features:
print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))
#让我们在图像中描绘出每个人脸特征!
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
for facial_feature in facial_features:
d.line(face_landmarks[facial_feature], width=5)
pil_image.show()
2、find_face文件夹
不仅能识别出来所有的人脸,而且可以将其截图挨个显示出来,打印在前台窗口
原始的图片
识别的图片
代码:
# -*- coding: utf-8 -*-
# 识别图片中的所有人脸并显示出来
# filename : find_faces_in_picture.py
# 导入pil模块 ,可用命令安装 apt-get install python-Imaging
from PIL import Image
# 导入face_recogntion模块,可用命令安装 pip install face_recognition
import face_recognition
# 将jpg文件加载到numpy 数组中
image = face_recognition.load_image_file("yiqi.jpg")
# 使用默认的给予HOG模型查找图像中所有人脸
# 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速
# 另请参见: find_faces_in_picture_cnn.py
face_locations = face_recognition.face_locations(image)
# 使用CNN模型
# face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")
# 打印:我从图片中找到了 多少 张人脸
print("I found {} face(s) in this photograph.".format(len(face_locations)))
# 循环找到的所有人脸
for face_location in face_locations:
# 打印每张脸的位置信息
top, right, bottom, left = face_location
print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))
# 指定人脸的位置信息,然后显示人脸图片
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
pil_image.show()
3、know_face文件夹
通过设定的人脸图片识别未知图片中的人脸
# -*- coding: utf-8 -*-
# 识别人脸鉴定是哪个人
# 导入face_recogntion模块,可用命令安装 pip install face_recognition
import face_recognition
#将jpg文件加载到numpy数组中
chen_image = face_recognition.load_image_file("chenduling.jpg")
#要识别的图片
unknown_image = face_recognition.load_image_file("sunyizheng.jpg")
#获取每个图像文件中每个面部的面部编码
#由于每个图像中可能有多个面,所以返回一个编码列表。
#但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。
chen_face_encoding = face_recognition.face_encodings(chen_image)[0]
print("chen_face_encoding:{}".format(chen_face_encoding))
unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]
print("unknown_face_encoding :{}".format(unknown_face_encoding))
known_faces = [
chen_face_encoding
]
#结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果
results = face_recognition.compare_faces(known_faces, unknown_face_encoding)
print("result :{}".format(results))
print("这个未知面孔是 陈都灵 吗? {}".format(results[0]))
print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results))
4、video文件夹
通过调用电脑摄像头动态获取视频内的人脸,将其和我们指定的图片集进行匹配,可以告知我们视频内的人脸是否是我们设定好的
实现:
代码:
# -*- coding: utf-8 -*-
# 摄像头头像识别
import face_recognition
import cv2
video_capture = cv2.VideoCapture(0)
# 本地图像
chenduling_image = face_recognition.load_image_file("chenduling.jpg")
chenduling_face_encoding = face_recognition.face_encodings(chenduling_image)[0]
# 本地图像二
sunyizheng_image = face_recognition.load_image_file("sunyizheng.jpg")
sunyizheng_face_encoding = face_recognition.face_encodings(sunyizheng_image)[0]
# 本地图片三
zhangzetian_image = face_recognition.load_image_file("zhangzetian.jpg")
zhangzetian_face_encoding = face_recognition.face_encodings(zhangzetian_image)[0]
# Create arrays of known face encodings and their names
# 脸部特征数据的集合
known_face_encodings = [
chenduling_face_encoding,
sunyizheng_face_encoding,
zhangzetian_face_encoding
]
# 人物名称的集合
known_face_names = [
"michong",
"sunyizheng",
"chenduling"
]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# 读取摄像头画面
ret, frame = video_capture.read()
# 改变摄像头图像的大小,图像小,所做的计算就少
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# 根据encoding来判断是不是同一个人,是就输出true,不是为flase
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 默认为unknown
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# if match[0]:
# name = "michong"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# 矩形框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
#加上标签
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display
cv2.imshow('monitor', frame)
# 按Q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
5、boss文件夹
本开源项目,主要是结合摄像头程序+极光推送,实现识别摄像头中的人脸。并且通过极光推送平台给移动端发送消息!
人脸识别全过程解析
1、人脸检测
“人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。
人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。
常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。
2、人脸配准
“人脸配准(Face Alignment)”是定位出人脸上五官关键点坐标的一项技术。
人脸配准算法的输入是“一张人脸图片”加“人脸坐标框”,输出五官关键点的坐标序列。五官关键点的数量是预先设定好的一个固定数值,可以根据不同的语义来定义(常见的有5点、68点、90点等等)。
当前效果的较好的一些人脸配准技术,基本通过深度学习框架实现,这些方法都是基于人脸检测的坐标框,按某种事先设定规则将人脸区域扣取出来,缩放的固定尺寸,然后进行关键点位置的计算。因此,若不计入图像缩放过程的耗时,人脸配准算法是可以计算量固定的过程。另外,相对于人脸检测,或者是后面将提到的人脸提特征过程,人脸配准算法的计算耗时都要少很多。
3、人脸属性识别
“人脸属性识别(Face Attribute)”是识别出人脸的性别、年龄、姿态、表情等属性值的一项技术。
一般的人脸属性识别算法的输入是“一张人脸图”和“人脸五官关键点坐标”,输出是人脸相应的属性值。人脸属性识别算法一般会根据人脸五官关键点坐标将人脸对齐(旋转、缩放、扣取等操作后,将人脸调整到预定的大小和形态),然后进行属性分析。
常规的人脸属性识别算法识别每一个人脸属性时都是一个独立的过程,即人脸属性识别只是对一类算法的统称,性别识别、年龄估计、姿态估计、表情识别都是相互独立的算法。但的一些基于深度学习的人脸属性识别也具有一个算法同时输入性别、年龄、姿态等属性值的能力。
4、以在基本保证算法效果的前提下,将模型大小和运算速度优化到移动端可用的状态。
5、人脸比对(人脸验证、人脸识别、人脸检索、人脸聚类)
“人脸比对(Face Compare)”是衡量两个人脸之间相似度的算法
人脸比对算法的输入是两个人脸特征(注:人脸特征由前面的人脸提特征算法获得),输出是两个特征之间的相似度。人脸验证、人脸识别、人脸检索都是在人脸比对的基础上加一些策略来实现。相对人脸提特征过程,单次的人脸比对耗时极短,几乎可以忽略。
基于人脸比对可衍生出人脸验证(Face Verification)、人脸识别(Face Recognition)、人脸检索(Face Retrieval)、人脸聚类(Face Cluster)等算法。
6、人脸验证
“人脸验证(Face Verification)”是判定两个人脸图是否为同一人的算法。
它的输入是两个人脸特征,通过人脸比对获得两个人脸特征的相似度,通过与预设的阈值比较来验证这两个人脸特征是否属于同一人(即相似度大于阈值,为同一人;小于阈值为不同)。
7、 人脸识别
“人脸识别(Face Recognition)”是识别出输入人脸图对应身份的算法。
它的输入一个人脸特征,通过和注册在库中N个身份对应的特征进行逐个比对,找出“一个”与输入特征相似度较高的特征。将这个较高相似度值和预设的阈值相比较,如果大于阈值,则返回该特征对应的身份,否则返回“不在库中”。
8、人脸检索
“人脸检索”是查找和输入人脸相似的人脸序列的算法。
人脸检索通过将输入的人脸和一个集合中的说有人脸进行比对,根据比对后的相似度对集合中的人脸进行排序。根据相似度从高到低排序的人脸序列即使人脸检索的结果。
9、人脸聚类
“人脸聚类(Face Cluster)”是将一个集合内的人脸根据身份进行分组的算法。
人脸聚类也通过将集合内所有的人脸两两之间做人脸比对,再根据这些相似度值进行分析,将属于同一个身份的人划分到一个组里。
在没有进行人工身份标注前,只知道分到一个组的人脸是属于同一个身份,但不知道确切身份。另外假设集合中有N个人脸,那么人脸聚类的算法复杂度为O(N2)
10、人脸活体
“人脸活体(FaceLiveness)”是判断人脸图像是来自真人还是来自攻击假体(照片、视频等)的方法。
和前面所提到的人脸技术相比,人脸活体不是一个单纯算法,而是一个问题的解法。这个解法将用户交互和算法紧密结合,不同的交互方式对应于完全不同的算法。鉴于方法的种类过于繁多,这里只介绍“人脸活体”的概念,不再展开。
相关推荐
- python gui编程框架推荐以及介绍(python gui开发)
-
Python的GUI编程框架有很多,这里为您推荐几个常用且功能强大的框架:Tkinter:Tkinter是Python的标准GUI库,它是Python内置的模块,无需额外安装。它使用简单,功能较为基础...
- python自动化框架学习-pyautogui(python接口自动化框架)
-
一、适用平台:PC(windows和mac均可用)二、下载安装:推荐使用命令行下载(因为会自动安装依赖库):pipinstallPyAutoGUI1该框架的依赖库还是蛮多的,第一次用的同学耐心等...
- Python 失宠!Hugging Face 用 Rust 新写了一个 ML框架,现已低调开源
-
大数据文摘受权转载自AI前线整理|褚杏娟近期,HuggingFace低调开源了一个重磅ML框架:Candle。Candle一改机器学习惯用Python的做法,而是Rust编写,重...
- Flask轻量级框架 web开发原来可以这么可爱呀~(建议收藏)
-
Flask轻量级框架web开发原来可以这么可爱呀大家好呀~今天让我们一起来学习一个超级可爱又实用的PythonWeb框架——Flask!作为一个轻量级的Web框架,Flask就像是一个小巧精致的工...
- Python3使用diagrams生成架构图(python架构设计)
-
目录技术背景diagrams的安装基础逻辑关系图组件簇的定义总结概要参考链接技术背景对于一个架构师或者任何一个软件工程师而言,绘制架构图都是一个比较值得学习的技能。这就像我们学习的时候整理的一些Xmi...
- 几个高性能Python网络框架,高效实现网络应用
-
Python作为一种广泛使用的编程语言,其简洁易读的语法和强大的生态系统,使得它在Web开发领域占据重要位置。高性能的网络框架是构建高效网络应用的关键因素之一。本文将介绍几个高性能的Python网络框...
- Web开发人员的十佳Python框架(python最好的web框架)
-
Python是一种面向对象、解释型计算机程序设计语言。除了语言本身的设计目的之外,Python的标准库也是值得大家称赞的,同时Python还自带服务器。其它方面,Python拥有足够多的免费数据函数库...
- Diagram as Code:用python代码生成架构图
-
工作中常需要画系统架构图,通常的方法是通过visio、processon、draw.io之类的软件,但是今天介绍的这个软件Diagrams,可以通过写Python代码完成架构图绘制,确实很co...
- 分享一个2022年火遍全网的Python框架
-
作者:俊欣来源:关于数据分析与可视化最近Python圈子当中出来一个非常火爆的框架PyScript,该框架可以在浏览器中运行Python程序,只需要在HTML程序中添加一些Python代码即可实现。该...
- 10个用于Web开发的最好 Python 框架
-
Python是一门动态、面向对象语言。其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性。除了语言本身的设计目的之外,Python标准库也是值得大家称赞的,Python甚至还...
- 使用 Python 将 Google 表格变成您自己的数据库
-
图片来自Shutterstock,获得FrankAndrade的许可您知道Google表格可以用作轻量级数据库吗?GoogleSheets是一个基于云的电子表格应用程序,可以像大多数数据库管...
- 牛掰!用Python处理Excel的14个常用操作总结!
-
自从学了Python后就逼迫用Python来处理Excel,所有操作用Python实现。目的是巩固Python,与增强数据处理能力。这也是我写这篇文章的初衷。废话不说了,直接进入正题。数据是网上找到的...
- 将python打包成exe的方式(将python文件打包成exe可运行文件)
-
客户端应用程序往往需要运行Python脚本,这对于那些不熟悉Python语言的用户来说可能会带来一定的困扰。幸运的是,Python拥有一些第三方模块,可以将这些脚本转换成可执行的.exe...
- 对比Excel学Python第1练:既有Excel,何用Python?
-
背景之前发的文章开头都是“Python数据分析……”,使得很多伙伴以为我是专门分享Python的,但我的本意并非如此,我的重点还是会放到“数据分析”上,毕竟,Python只是一种工具而已。现在网上可以...
- 高效办公:Python处理excel文件,摆脱无效办公
-
一、Python处理excel文件1.两个头文件importxlrdimportxlwt其中xlrd模块实现对excel文件内容读取,xlwt模块实现对excel文件的写入。2.读取exce...
你 发表评论:
欢迎- 一周热门
-
-
python 3.8调用dll - Could not find module 错误的解决方法
-
加密Python源码方案 PyArmor(python项目源码加密)
-
Python3.8如何安装Numpy(python3.6安装numpy)
-
大学生机械制图搜题软件?7个受欢迎的搜题分享了
-
编写一个自动生成双色球号码的 Python 小脚本
-
免费男女身高在线计算器,身高计算公式
-
将python文件打包成exe程序,复制到每台电脑都可以运行
-
Python学习入门教程,字符串函数扩充详解
-
Python数据分析实战-使用replace方法模糊匹配替换某列的值
-
Python进度条显示方案(python2 进度条)
-
- 最近发表
-
- python gui编程框架推荐以及介绍(python gui开发)
- python自动化框架学习-pyautogui(python接口自动化框架)
- Python 失宠!Hugging Face 用 Rust 新写了一个 ML框架,现已低调开源
- Flask轻量级框架 web开发原来可以这么可爱呀~(建议收藏)
- Python3使用diagrams生成架构图(python架构设计)
- 几个高性能Python网络框架,高效实现网络应用
- Web开发人员的十佳Python框架(python最好的web框架)
- Diagram as Code:用python代码生成架构图
- 分享一个2022年火遍全网的Python框架
- 10个用于Web开发的最好 Python 框架
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)