用Python进行人脸识别「包括源代码」
off999 2024-10-20 08:08 23 浏览 0 评论
Python可以从图像或视频中检测和识别你的脸。
人脸检测与识别是计算机视觉领域的研究热点之一。
人脸识别的应用包括人脸解锁、安全防护等,医生和医务人员利用人脸识别来获取病历和病史,更好地诊断疾病。
入门Python其实很容易,但是我们要去坚持学习,每一天坚持很困难,我相信很多人学了一个星期就放弃了,为什么呢?其实没有好的学习资料给你去学习,你们是很难坚持的,这是小编收集的Python入门学习资料关注,转发,私信小编“01”,即可免费领取!希望对你们有帮助
关于Python人脸识别
在这个python项目中,我们将构建一个机器学习模型,该模型从图像中识别人。我们在项目中使用了人脸识别API和OpenCV。
随时了解最新的技术趋势
加入DataFlair的电报!
工具与图书馆
- Python-3.x
- CV2-4.5.2
- 矮胖-1.20.3
- 人脸识别-1.3.0
若要安装上述软件包,请使用以下命令。
pip install numpy opencv-python
要安装FaceRecognition,首先安装dlib包。
pip install dlib
现在,使用以下命令安装面部识别模块
pip install face_recognition
下载人脸识别Python代码
请下载python面部识别项目的源代码: 人脸识别工程代码
项目数据集
我们可以使用我们自己的数据集来完成这个人脸识别项目。对于这个项目,让我们以受欢迎的美国网络系列“老友记”为数据集。该数据集包含在面部识别项目代码中,您在上一节中下载了该代码。
建立人脸识别模型的步骤
在继续之前,让我们知道什么是人脸识别和检测。
人脸识别是从照片和视频帧中识别或验证一个人的脸的过程。
人脸检测是指在图像中定位和提取人脸(位置和大小)以供人脸检测算法使用的过程。
人脸识别方法用于定位图像中唯一指定的特征。在大多数情况下,面部图片已经被移除、裁剪、缩放和转换为灰度。人脸识别包括三个步骤:人脸检测、特征提取、人脸识别。
OpenCV是一个用C++编写的开源库.它包含了用于计算机视觉任务的各种算法和深度神经网络的实现。
1.准备数据集
创建2个目录,训练和测试。从互联网上为每个演员选择一个图片,并下载到我们的“火车”目录中。确保您所选择的图像能够很好地显示人脸的特征,以便对分类器进行分类。
为了测试模型,让我们拍摄一张包含所有强制转换的图片,并将其放到我们的“test”目录中。
为了您的舒适,我们增加了培训和测试数据与项目代码。
2.模型的训练
首先导入必要的模块。
import face_recognition as fr
import cv2
import numpy as np
import os
人脸识别库包含帮助人脸识别过程的各种实用程序的实现。
现在,创建2个列表来存储图像(人员)的名称及其各自的脸编码。
path = "./train/"
known_names = []
known_name_encodings = []
images = os.listdir(path)
人脸编码是一种值的矢量,它代表着脸部特征之间的重要度量,如眼睛之间的距离、额头的宽度等。
我们循环遍历火车目录中的每个图像,提取图像中的人的姓名,计算其脸编码向量,并将信息存储在相应的列表中。
for _ in images:
image = fr.load_image_file(path + _)
image_path = path + _
encoding = fr.face_encodings(image)[0]
known_name_encodings.append(encoding)
known_names.append(os.path.splitext(os.path.basename(image_path))[0].capitalize())
3.在测试数据集中测试模型
如前所述,我们的测试数据集只包含一个包含所有人员的图像。
使用CV2 imread()方法读取测试映像。
test_image = "./test/test.jpg"
image = cv2.imread(test_image)
人脸识别库提供了一种名为Face_Locations()的有用方法,它定位图像中检测到的每个人脸的坐标(左、下、右、上)。使用这些位置值,我们可以很容易地找到脸编码。
face_locations = fr.face_locations(image)
face_encodings = fr.face_encodings(image, face_locations)
我们循环遍历每个面部位置及其在图像中的编码。然后,我们将这种编码与“列车”数据集中的人脸编码进行比较。
然后计算人脸距离,即计算测试图像编码和训练图像编码之间的相似性。现在,我们从它选取最小值距离,表示测试图像的这张脸是训练数据集中的人之一。
现在,使用CV2模块中的方法绘制一个带有面部位置坐标的矩形。
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
matches = fr.compare_faces(known_name_encodings, face_encoding)
name = ""
face_distances = fr.face_distance(known_name_encodings, face_encoding)
best_match = np.argmin(face_distances)
if matches[best_match]:
name = known_names[best_match]
cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(image, (left, bottom - 15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
使用CV2模块的imShow()方法显示图像。
cv2.imshow("Result", image)
使用imwrite()方法将图像保存到当前工作目录中。
cv2.imwrite("./output.jpg", image)
释放未被释放的资源(如果有的话)。
cv2.waitKey(0)
cv2.destroyAllWindows()
Python人脸识别输出
让我们看看模型的输出。
摘要
在这个机器学习项目中,我们使用我们自己的自定义数据集,在python和OpenCV中开发了一个人脸识别模型。
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)