百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

简单易懂的人脸识别!用PythonOpenCV实现(适合初学者)!附源码

off999 2024-10-20 08:08 24 浏览 0 评论

前言:

OpenCV 是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影。

OpenCV 起始于 1999 年 Intel 的一个内部研究项目。从那时起,它的开发就一直很活跃。进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台。

1999 年,半条命发布后大红大热。Intel 奔腾 3 处理器是当时最高级的 CPU,400-500 MHZ 的时钟频率已被认为是相当快。2006 年 OpenCV 1.0 版本发布的时候,当时主流 CPU 的性能也只和 iPhone 5 的 A6 处理器相当。尽管计算机视觉从传统上被认为是计算密集型应用,但我们的移动设备性能已明显地超出能够执行有用的计算机视觉任务的阈值,带着摄像头的移动设备可以在计算机视觉平台上大有所为。

本文为简单易懂的人脸识别!

一、人脸识别步骤

二、直接上代码

(1)录入人脸.py

import cv2
 
 
face_name = 'cjw'  # 该人脸的名字
 
 
# 加载OpenCV人脸检测分类器
face_cascade = cv2.CascadeClassifier("D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/"
                                     "data/haarcascades/haarcascade_frontalface_default.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()  # 准备好识别方法LBPH方法
 
 
camera = cv2.VideoCapture(0)  # 0:开启摄像头
success, img = camera.read()  # 从摄像头读取照片
W_size = 0.1 * camera.get(3)  # 在视频流的帧的宽度
H_size = 0.1 * camera.get(4)  # 在视频流的帧的高度
 
 
def get_face():
    print("正在从摄像头录入新人脸信息 \n")
    picture_num = 0  # 设置录入照片的初始值
    while True:  # 从摄像头读取图片
        global success  # 设置全局变量
        global img  # 设置全局变量
        ret, frame = camera.read()  # 获得摄像头读取到的数据(ret为返回值,frame为视频中的每一帧)
        if ret is True:
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 转为灰度图片
        else:
            break
 
        face_detector = face_cascade  # 记录摄像头记录的每一帧的数据,让Classifier判断人脸
        faces = face_detector.detectMultiScale(gray, 1.3, 5)  # gray是要灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
 
        for (x, y, w, h) in faces:  # 制造一个矩形框选人脸(xy为左上角的坐标,w为宽,h为高)
            cv2.rectangle(frame, (x, y), (x + w, y + w), (255, 0, 0))
            picture_num += 1  # 照片数加一
            t = face_name
            cv2.imwrite("./data/1." + str(t) + '.' + str(picture_num) + '.jpg', gray[y:y + h, x:x + w])
            # 保存图像,将脸部的特征转化为二维数组,保存在data文件夹内
        maximums_picture = 13  # 设置摄像头拍摄照片的数量的上限
        if picture_num > maximums_picture:
            break
        cv2.waitKey(1)
 
 
get_face()

注意:加载分类器的文件地址;cv2.imwrite:保存图片的路径

(2)数据训练.py

import os
import cv2
from PIL import Image
import numpy as np
 
 
def getlable(path):
    facesamples = []  # 储存人脸数据(该数据为二位数组)
    ids = []  # 储存星门数据
    imagepaths = [os.path.join(path, f) for f in os.listdir(path)]  # 储存图片信息
    face_detector = cv2.CascadeClassifier('D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/data/haarcascades/'
                                          'haarcascade_frontalface_alt2.xml')  # 加载分类器
    print('数据排列:', imagepaths)  # 打印数组imagepaths
    for imagePath in imagepaths:  # 遍历列表中的图片
        pil_img = Image.open(imagePath).convert('L')
        # 打开图片,灰度化,PIL的两种不同模式:
        # (1)1(黑白,有像素的地方为1,无像素的地方为0)
        # (2)L(灰度图像,把每个像素点变成0~255的数值,颜色越深值越大)
        img_numpy = np.array(pil_img, 'uint8')  # 将图像转化为数组
        faces = face_detector.detectMultiScale(img_numpy)  # 获取人脸特征
        id = int(os.path.split(imagePath)[1].split('.')[0])  # 获取每张图片的id和姓名
        for x, y, w, h in faces:  # 预防无面容照片
            ids.append(id)
            facesamples.append(img_numpy[y:y+h, x:x+w])
        # 打印脸部特征和id
        print('id:', id)
    print('fs:', facesamples)
    return facesamples, ids
 
 
if __name__ == '__main__':
    path = 'D:/BaiduNetdiskDownload/python/opencv/pythonProject/face1/data'  # 图片路径
    faces, ids = getlable(path)  # 获取图像数组和id标签数组和姓名
    recognizer = cv2.face.LBPHFaceRecognizer_create()  # 获取训练对象
    recognizer.train(faces, np.array(ids))
    recognizer.write('trainer/trainer.yml')   # 保存生成的人脸特征数据文件
 

(3) 进行识别.py

import cv2
import os
 
 
# 加载训练数据集文件
recogizer = cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')  # 获取脸部特征数据文件
names = []
warningtime = 0
 
 
def face_detect_demo(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
    face_detector = cv2.CascadeClassifier('D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/'
                                          'data/haarcascades/haarcascade_frontalface_default.xml')  # 加载分类器
    face = face_detector.detectMultiScale(gray, 1.3, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))
    # 进行识别,把整张人脸部分框起来
    for x, y, w, h in face:
        cv2.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)  # 矩形
        cv2.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=(0, 255, 0), thickness=1)  # 圆形
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])  # 进行预测、评分
        if confidence > 80:
            global warningtime
            warningtime += 1
            if warningtime > 100:  # 警报达到一定次数,说明不是这个人
                warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            cv2.putText(img, str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
            # 把姓名打到人脸的框图上
    cv2.imshow('result', img)
    # print('bug:',ids)
 
 
def name():
    path = 'D:/BaiduNetdiskDownload/python/opencv/pythonProject/face1/data'
    imagepaths = [os.path.join(path, f) for f in os.listdir(path)]
    for imagePath in imagepaths:
        name1 = str(os.path.split(imagePath)[1].split('.', 2)[1])
        names.append(name1)
 
 
cap = cv2.VideoCapture('3.mp4')
name()
while True:
    flag, frame = cap.read()  # 获得摄像头读取到的数据(flag为返回值,frame为视频中的每一帧)
    if not flag:
        break
    face_detect_demo(frame)
    if ord(' ') == cv2.waitKey(10):  # 按空格,退出
        break
cv2.destroyAllWindows()
cap.release()
# print(names)

三、运行过程及结果

1、获取人脸照片于目标文件中

2、进行数据训练,获得trainer.yml文件中的数据

可私信我‘666’三个字领取源码哦

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: