百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Schedule—简单实用的 Python 周期任务调度工具

off999 2024-10-21 06:53 20 浏览 0 评论

如果你想周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

  • 1.不方便执行秒级任务
  • 2.当需要执行的定时任务有上百个的时候,Crontab 的管理就会特别不方便

还有一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

# Python 实用宝典
import schedule
import time
def job():
print("I'm working...")
schedule.every(10).minutes.do(job)
while True:
schedule.run_pending()
time.sleep(1)


上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备



开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南。

请选择以下任一种方式输入命令安装依赖
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule


2.基本使用


最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

# Python 实用宝典
import schedule
import time
def job():
print("I'm working...")
# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)
while True:
schedule.run_pending()
time.sleep(1)


可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:

# Python 实用宝典
import schedule
import time
def job_that_executes_once():
# 此处编写的任务只会执行一次...
return schedule.CancelJob
schedule.every().day.at('22:30').do(job_that_executes_once)
while True:
schedule.run_pending()
time.sleep(1)


参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

# Python 实用宝典
import schedule
def greet(name):
print('Hello', name)
# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')


获取目前所有的作业

如果你想获取目前所有的作业:

# Python 实用宝典
import schedule
def hello():
print('Hello world')
schedule.every().second.do(hello)
all_jobs = schedule.get_jobs()


取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

# Python 实用宝典
import schedule
def greet(name):
print('Hello {}'.format(name))
schedule.every().second.do(greet)
schedule.clear()


标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

# Python 实用宝典
import schedule
def greet(name):
print('Hello {}'.format(name))
# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')
# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')
# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')


设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

# Python 实用宝典
import schedule
from datetime import datetime, timedelta, time
def job():
print('Boo')
# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)
# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)
# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)
# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)
# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)


截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

# Python 实用宝典
import schedule
def job_1():
print('Foo')
def job_2():
print('Bar')
schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)
schedule.run_all()
# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)


3.高级使用


装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

# Python 实用宝典
from schedule import every, repeat, run_pending
import time
# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
print("I am a scheduled job")
while True:
run_pending()
time.sleep(1)


并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

# Python 实用宝典
import threading
import time
import schedule
def job1():
print("I'm running on thread %s" % threading.current_thread())
def job2():
print("I'm running on thread %s" % threading.current_thread())
def job3():
print("I'm running on thread %s" % threading.current_thread())
def run_threaded(job_func):
job_thread = threading.Thread(target=job_func)
job_thread.start()
schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)
while True:
schedule.run_pending()
time.sleep(1)


日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

# Python 实用宝典
import schedule
import logging
logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)
def job():
print("Hello, Logs")
schedule.every().second.do(job)
schedule.run_all()
schedule.clear()


效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting
*all* jobs


异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

# Python 实用宝典
import functools
def catch_exceptions(cancel_on_failure=False):
def catch_exceptions_decorator(job_func):
@functools.wraps(job_func)
def wrapper(*args, **kwargs):
try:
return job_func(*args, **kwargs)
except:
import traceback
print(traceback.format_exc())
if cancel_on_failure:
return schedule.CancelJob
return wrapper
return catch_exceptions_decorator
@catch_exceptions(cancel_on_failure=True)
def bad_task():
return 1 / 0
schedule.every(5).minutes.do(bad_task)


这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。


我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注我们!

相关推荐

python列表(List)必会的13个核心技巧(附实用方法)

列表(List)是Python入门的关键步骤,因为它是编程中最常用的数据结构之一。以下是高效掌握列表的核心技巧和实用方法:一、理解列表的本质可变有序集合:可随时修改内容,保持元素顺序混合类型:一个列表...

Python列表(List)一文全掌握:核心知识点+20实战练习题

Python列表(List)知识点教程一、列表的定义与特性定义:列表是可变的有序集合,用方括号[]定义,元素用逗号分隔。list1=[1,"apple",3.14]lis...

python编程中列表常见的9大问题,你知道吗?

Python列表常见错误及解决方案列表(list)是Python中最常用的数据结构之一,但在使用过程中经常会遇到各种问题。以下是Python列表使用中的常见错误及其解决方法:一、索引越界错误1.访问...

python之列表操作(python列表操作函数大全)

常用函数函数名功能说明append将一个元素添加到列表中names=['tom']用法:names.append('tommy')注意事项:被添加的元素只会被添加到...

7 种在 Python 中反转列表的智能方法

1.使用reverse()方法(原地)my_list=[10,12,6,34,23]my_list.reverse()print(my_list)#output:[23,34,6,12,...

Python教程-列表复制(python中列表copy的用法)

作为软件开发者,我们总是努力编写干净、简洁、高效的代码。Python列表是一种多功能的数据结构,它允许你存储一个项目的集合。在Python中,列表是可变的,这意味着你可以在创建一个列表后改变它的...

「Python程序设计」基本数据类型:列表(数组)

列表是python程序设计中的一个基本的,也是重要的数据结构。我们可以把列表数据结构,理解为其它编程语言中的数组。定义和创建列表列表中的数据元素的索引,和数组基本一致,第一个元素的索引,或者是下标为0...

Python中获取列表最后一个元素的方法

技术背景在Python编程中,经常会遇到需要获取列表最后一个元素的场景。Python提供了多种方法来实现这一需求,不同的方法适用于不同的场景。实现步骤1.使用负索引-1这是最简单和最Pythoni...

Python学不会来打我(11)列表list详解:用法、场景与类型转换

在Python编程中,列表(list)是最常用且功能最强大的数据结构之一。它是一个有序、可变、支持重复元素的集合,可以存储任意类型的对象,包括整数、字符串、布尔值、甚至其他列表。本文将从基础语法开始...

零起点Python机器学习快速入门-4-4-列表操作

Python列表的基本操作展开。首先,定义了两个列表zlst和vlst并将它们的内容打印出来。接着,使用切片操作从这两个列表中提取部分元素,分别得到s2、s3和s4三个新的列表,并打...

python入门 到脱坑 基本数据类型—列表

以下是Python列表(List)的入门详解,包含基础操作、常用方法和实用技巧,适合初学者系统掌握:一、列表基础1.定义列表#空列表empty_list=[]#包含不同类型元素的列表...

Python 列表(List)完全指南:数据操作的利器

在Python中,列表(list)是一种可变序列(mutablesequence),它允许我们存储和操作一组有序数据(ordereddata)。本教程将从基础定义(basicdefiniti...

如何快速掌握 Python中列表的使用

学习python知识,好掌握Python列表的使用。从概念上来讲,Python中的列表list是一种有序、可变的容器,可以存储任意类型的数据(包括其他列表)。以下是列表的常用的操作和知识:1....

Python中的列表详解及示例(python中列表的用法)

艾瑞巴蒂干货来了,数据列表,骚话没有直接来吧列表(List)是Python中最基本、最常用的数据结构之一,它是一个有序的可变集合,可以包含任意类型的元素。列表的基本特性有序集合:元素按插入顺序存储可变...

python数据类型之列表、字典、元组、集合及操作

Python数据类型进阶:列表、字典与集合在Python中,数据类型是编程的基础,熟练掌握常用数据结构是成为高级开发者的关键。上一篇文章我们学习到了Python的数据类型:字符串(string)、数...

取消回复欢迎 发表评论: