百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python中的函数式编程教程,学会用一行代码搞定所有内容

off999 2024-10-21 06:55 17 浏览 0 评论


前言

在本文中,您将了解什么是函数范型,以及如何在Python中使用函数式编程。在Python中,函数式编程中的map和filter可以做与列表相同的事情。这打破了Python的禅宗规则之一,因此函数式编程的这些部分不被认为是“Python式的”。但是由于函数式编程高阶编程?的必经之路,所以我们需要了解甚至熟练掌握?。?

命令范式和函数范式

我们先对比一下编程中的命令范式两个概念:

在命令式范式中,您通过给计算机一个任务序列来完成任务,然后它执行这些任务。在执行它们时,它可以改变状态。例如,假设你一开始把A设为5,然后你改变A的值,你有变量,在这个意义上,变量内部的值是变化的。

在函数范型中,你不告诉计算机要做什么,而是告诉它是什么。例如:一个数的最大公约数是多少,从1到n的乘积是多少,等等。因此,变量不能改变。一旦你设置了一个变量,它就会一直保持这种状态(注意,在纯函数语言中它们不被称为变量)。所谓"副作用"(side effect),指的是函数内部与外部互动(最典型的情况,就是修改全局变量的值),产生运算以外的其他结果。函数式编程强调没有"副作用",意味着函数要保持独立,所有功能就是返回一个新的值,没有其他行为,尤其是不得修改外部变量的值。

让我们来看一个典型Python代码的例子:


a = 3

def some_func():

    global a

    a = 5



some_func()

print(a)

这段代码的输出是5。在函数范型中,改变变量是一个大禁忌,而让函数影响它们范围之外的东西也是一个大禁忌。函数唯一能做的就是计算并返回结果。


现在你可能会想:“没有变量,就没有副作用?”这有什么好处呢?”


如果一个函数使用相同的参数被调用两次,那么它肯定会返回相同的结果。因为函数没有副作用,如果你正在构建一个计算的程序,你可以加速这个程序。如果程序知道func(2)等于3,我们可以将其存储在一个表中。这可以防止程序在我们已经知道答案的情况下重复运行相同的函数。


Map

为了理解map,让我们首先看看什么是iterables。iterable是任何可以迭代的东西。通常这些是列表或数组,但是Python有许多不同类型的迭代器。您甚至可以创建自己的对象,这些对象可以使用Python中魔法方法进行迭代。这里有两个方法:

class Counter:

    def __init__(self, low, high):

        # set class attributes inside the magic method __init__

        # for "inistalise"

        self.current = low

        self.high = high



    def __iter__(self):

        # first magic method to make this object iterable

        return self

    

    def __next__(self):

        # second magic method

        if self.current > self.high:

            raise StopIteration

        else:

            self.current += 1

            return self.current - 1


“魔法方法是python内置方法,不需要主动调用,存在的目的是为了给python的解释器进行调用,几乎每个魔法方法都有一个对应的内置函数,或者运算符,当我们对这个对象使用这些函数或者运算符时就会调用类中的对应魔法方法,可以理解为重写内置函数。”


第一个神奇的方法是用“__ iter__”返回迭代对象,通常在循环开始时使用。

如果我们运行:

for c in Counter(3, 8):    print(c)

那么将会输出:

345678

在Python中,迭代器是一个对象,它只有一个简单的魔法方法。这意味着您可以访问对象中的位置,但不能遍历对象。有些对象将使用方法__next__,如上面代码中第二个例子。


现在我们知道了什么是可迭代对象,让我们回到map函数。map函数允许我们将一个函数应用到iterable中的每个项。通常,我们希望对列表中的每一项都应用一个函数,但是要知道对于大多数迭代器来说都是可能的。Map接受两个输入,即要应用的函数和可迭代的对象:

map(function, iterable)

假设我们有一个列表:

[1, 2, 3, 4, 5]

我们希望将列表中的每一个数字进行平方,那么可以这么写代码:

x = [1, 2, 3, 4, 5]

def square(num):

    return num*num



print(list(map(square, x)))


Python中的函数是惰性的。如果我们代码中不包含“list()”,函数将存储迭代的定义,而不是一个列表。我们需要显式地告诉Python“将这个转换为一个列表”,以便我们使用它。


现在写一个像“square(num)”这样的普通函数很好,但是它看起来不太对。我们必须定义一个完整的函数才能在map中使用一次?我们可以使用lambda(匿名)函数在map中定义一个函数。


lambda 表达式

lambda表达式是一个单行函数。举个例子,这个lambda表达式对给定的一个数字求平方:

square = lambda x: x * x

运行程序:

>>> square(3)
9


告诉Python这是一个lambda函数,输入被称为x,冒号后面的内容就是你对输入的操作,它会自动返回结果。

现在我们可以将上面的程序简化:

x = [1, 2, 3, 4, 5]
print(list(map(lambda num: num * num, x)))


Reduce

Reduce是一个函数,它把一个可迭代的东西变成一个东西。通常,您在一个列表上执行计算以将其缩减为一个数字。Reduce是这样的:

reduce(function, list)

我们可以(通常也会)使用lambda表达式作为函数。

列表的乘积是每一个单独的数字相乘。要做到这一点,你可以:

product = 1x = [1, 2, 3, 4]for num in x:    product = product * num

但是使用reduce你可以这样写:

from functools import reduce
product = reduce((lambda x, y: x * y),[1, 2, 3, 4])


Filter

filter函数接受一个iterable并过滤掉在该iterable中不需要的所有东西。

filter通常接受一个函数和一个列表。它将函数应用于列表中的每一项,如果该函数返回True,则不执行任何操作。如果返回False,则从列表中删除该项目。

语法如下:

filter(function, list)

让我们看看一个小例子,没有过滤器,我们会写:


x = range(-5, 5)

new_list = []



for num in x:

    if num < 0:

        new_list.append(num)


有了过滤器,这就变成:


x = range(-5, 5)

all_less_than_zero = list(filter(lambda num: num < 0, x))


高阶函数

高阶函数可以将函数作为参数并返回函数。一个非常简单的例子如下:


def summation(nums):

    return sum(nums)



def action(func, numbers):

    return func(numbers)



print(action(summation, [1, 2, 3]))

partial application

部分应用程序(也称为闭包)有点奇怪,但是非常酷。您可以调用一个函数而不提供它需要的所有参数。我们来看一个例子。我们想要创建一个函数,它有两个参数,一个底数和一个指数,并返回底数的指数次方,就像这样:

def power(base, exponent):  return base ** exponent

现在我们想要一个专门的平方函数,用幂函数求出一个数的平方:

def square(base):  return power(base, 2)

这是可行的,但如果我们想要一个立方体函数呢?或者是函数的4次方?我们能一直写下去吗?嗯,你可以。但是程序员很懒。如果你一遍又一遍地重复同样的事情,这是一个信号,表明有一种更快的方法可以加快速度,让你不再重复。我们可以在这里使用部分应用程序。让我们看一个例子的平方函数使用部分应用程序:

from functools import partial?square = partial(power, exponent=2)print(square(2))

这是不是很酷!我们可以调用需要两个参数的函数,只需使用一个参数就可以告诉Python第二个参数是什么。

参考:https://medium.com/hackernoon/learn-functional-python-in-10-minutes-to-2d1651dece6f

相关推荐

如何理解python中面向对象的类属性和实例属性?

类属性和实例属性类属性就是给类对象中定义的属性通常用来记录与这个类相关的特征类属性不会用于记录具体对象的特征类属性的理解:类属性是与类自身相关联的变量,而不是与类的实例关联。它们通...

Java程序员,一周Python入门:面向对象(OOP) 对比学习

Java和Python都是**面向对象编程(OOP)**语言,无非是类、对象、继承、封装、多态。下面我们来一一对比两者的OOP特性。1.类和对象Java和Python都支持面向对象...

松勤技术精选:Python面向对象魔术方法

什么是魔术方法相信大家在使用python的过程中经常会看到一些双下划线开头,双下划线结尾的方法,我们把它统称为魔术方法魔术方法的特征魔术方法都是双下划线开头,双下划线结尾的方法魔术方法都是pytho...

[2]Python面向对象-【3】方法(python3 面向对象)

方法的概念在Python中,方法是与对象相关联的函数。方法可以访问对象的属性,并且可以通过修改对象的属性来改变对象的状态。方法定义在类中,可以被该类的所有对象共享。方法也可以被继承并重载。方法的语法如...

一文带你理解python的面向对象编程(OOP)

面向对象编程(OOP,Object-OrientedProgramming)是一个较难掌握的概念,而Python作为一门面向对象的语言,在学习其OOP特性时,许多人都会对“继承”和“多态”等...

简单学Python——面向对象1(编写一个简单的类)

Python是一种面向对象的编程语言(ObjectOrientedProgramming),在Python中所有的数据类型都是对象。在Python中,也可以自创对象。什么是类呢?类(Class)是...

python进阶突破面向对象——四大支柱

面向对象编程(OOP)有四大基本特性,通常被称为"四大支柱":封装(Encapsulation)、继承(Inheritance)、多态(Polymorphism)和抽象(Abstrac...

Python学不会来打我(51)面向对象编程“封装”思想详解

在面向对象编程(Object-OrientedProgramming,简称OOP)中,“封装(Encapsulation)”是四大核心特性之一(另外三个是继承、多态和抽象),它通过将数据(属性)和...

Python之面向对象:对象属性解析:MRO不够用,补充3个方法

引言在前面的文章中,我们谈及Python在继承关系,尤其是多继承中,一个对象的属性的查找解析顺序。由于当时的语境聚焦于继承关系,所以只是简要提及了属性解析顺序同方法的解析顺序,而方法的解析顺序,在Py...

Python之面向对象:通过property兼顾属性的动态保护与兼容性

引言前面的文章中我们简要提及过关于Python中私有属性的使用与内部“名称混淆”的实现机制,所以,访问私有属性的方法至少有3种做法:1、使用实例对象点操作符的方式,直接访问名称混淆后的真实属性名。2、...

Python之面向对象:私有属性是掩耳盗铃还是恰到好处

引言声明,今天的文章中没有一行Python代码,更多的是对编程语言设计理念的思考。上一篇文章中介绍了关于Python面向对象封装特性的私有属性的相关内容,提到了Python中关于私有属性的实现是通过“...

Python中的私有属性与方法:解锁面向对象编程的秘密

Python中的私有属性与方法:解锁面向对象编程的秘密在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框...

Python 面向对象:掌握类的继承与组合,让你的代码更高效!

引言:构建高效代码的基石Python以其简洁强大的特性,成为众多开发者首选的编程语言。而在Python的面向对象编程(OOP)范畴中,类的继承和组合无疑是两大核心概念。它们不仅能帮助我们实现代码复用,...

python进阶-Day2: 面向对象编程 (OOP)

以下是为Python进阶Day2设计的学习任务,专注于面向对象编程(OOP)的核心概念和高阶特性。代码中包含详细注释,帮助理解每个部分的实现和目的。任务目标:复习OOP基础:类、对象、继...

外婆都能学会的Python教程(二十八):Python面向对象编程(二)

前言Python是一个非常容易上手的编程语言,它的语法简单,而且功能强大,非常适合初学者学习,它的语法规则非常简单,只要按照规则写出代码,Python解释器就可以执行。下面是Python的入门教程介绍...

取消回复欢迎 发表评论: