Python中的函数式编程教程,学会用一行代码搞定所有内容
off999 2024-10-21 06:55 21 浏览 0 评论
前言
在本文中,您将了解什么是函数范型,以及如何在Python中使用函数式编程。在Python中,函数式编程中的map和filter可以做与列表相同的事情。这打破了Python的禅宗规则之一,因此函数式编程的这些部分不被认为是“Python式的”。但是由于函数式编程高阶编程?的必经之路,所以我们需要了解甚至熟练掌握?。?
命令范式和函数范式
我们先对比一下编程中的命令范式两个概念:
在命令式范式中,您通过给计算机一个任务序列来完成任务,然后它执行这些任务。在执行它们时,它可以改变状态。例如,假设你一开始把A设为5,然后你改变A的值,你有变量,在这个意义上,变量内部的值是变化的。
在函数范型中,你不告诉计算机要做什么,而是告诉它是什么。例如:一个数的最大公约数是多少,从1到n的乘积是多少,等等。因此,变量不能改变。一旦你设置了一个变量,它就会一直保持这种状态(注意,在纯函数语言中它们不被称为变量)。所谓"副作用"(side effect),指的是函数内部与外部互动(最典型的情况,就是修改全局变量的值),产生运算以外的其他结果。函数式编程强调没有"副作用",意味着函数要保持独立,所有功能就是返回一个新的值,没有其他行为,尤其是不得修改外部变量的值。
让我们来看一个典型Python代码的例子:
a = 3
def some_func():
global a
a = 5
some_func()
print(a)
这段代码的输出是5。在函数范型中,改变变量是一个大禁忌,而让函数影响它们范围之外的东西也是一个大禁忌。函数唯一能做的就是计算并返回结果。
现在你可能会想:“没有变量,就没有副作用?”这有什么好处呢?”
如果一个函数使用相同的参数被调用两次,那么它肯定会返回相同的结果。因为函数没有副作用,如果你正在构建一个计算的程序,你可以加速这个程序。如果程序知道func(2)等于3,我们可以将其存储在一个表中。这可以防止程序在我们已经知道答案的情况下重复运行相同的函数。
Map
为了理解map,让我们首先看看什么是iterables。iterable是任何可以迭代的东西。通常这些是列表或数组,但是Python有许多不同类型的迭代器。您甚至可以创建自己的对象,这些对象可以使用Python中魔法方法进行迭代。这里有两个方法:
class Counter:
def __init__(self, low, high):
# set class attributes inside the magic method __init__
# for "inistalise"
self.current = low
self.high = high
def __iter__(self):
# first magic method to make this object iterable
return self
def __next__(self):
# second magic method
if self.current > self.high:
raise StopIteration
else:
self.current += 1
return self.current - 1
“魔法方法是python内置方法,不需要主动调用,存在的目的是为了给python的解释器进行调用,几乎每个魔法方法都有一个对应的内置函数,或者运算符,当我们对这个对象使用这些函数或者运算符时就会调用类中的对应魔法方法,可以理解为重写内置函数。”
第一个神奇的方法是用“__ iter__”返回迭代对象,通常在循环开始时使用。
如果我们运行:
for c in Counter(3, 8): print(c)
那么将会输出:
345678
在Python中,迭代器是一个对象,它只有一个简单的魔法方法。这意味着您可以访问对象中的位置,但不能遍历对象。有些对象将使用方法__next__,如上面代码中第二个例子。
现在我们知道了什么是可迭代对象,让我们回到map函数。map函数允许我们将一个函数应用到iterable中的每个项。通常,我们希望对列表中的每一项都应用一个函数,但是要知道对于大多数迭代器来说都是可能的。Map接受两个输入,即要应用的函数和可迭代的对象:
map(function, iterable)
假设我们有一个列表:
[1, 2, 3, 4, 5]
我们希望将列表中的每一个数字进行平方,那么可以这么写代码:
x = [1, 2, 3, 4, 5]
def square(num):
return num*num
print(list(map(square, x)))
Python中的函数是惰性的。如果我们代码中不包含“list()”,函数将存储迭代的定义,而不是一个列表。我们需要显式地告诉Python“将这个转换为一个列表”,以便我们使用它。
现在写一个像“square(num)”这样的普通函数很好,但是它看起来不太对。我们必须定义一个完整的函数才能在map中使用一次?我们可以使用lambda(匿名)函数在map中定义一个函数。
lambda 表达式
lambda表达式是一个单行函数。举个例子,这个lambda表达式对给定的一个数字求平方:
square = lambda x: x * x
运行程序:
>>> square(3)
9
告诉Python这是一个lambda函数,输入被称为x,冒号后面的内容就是你对输入的操作,它会自动返回结果。
现在我们可以将上面的程序简化:
x = [1, 2, 3, 4, 5]
print(list(map(lambda num: num * num, x)))
Reduce
Reduce是一个函数,它把一个可迭代的东西变成一个东西。通常,您在一个列表上执行计算以将其缩减为一个数字。Reduce是这样的:
reduce(function, list)
我们可以(通常也会)使用lambda表达式作为函数。
列表的乘积是每一个单独的数字相乘。要做到这一点,你可以:
product = 1x = [1, 2, 3, 4]for num in x: product = product * num
但是使用reduce你可以这样写:
from functools import reduce
product = reduce((lambda x, y: x * y),[1, 2, 3, 4])
Filter
filter函数接受一个iterable并过滤掉在该iterable中不需要的所有东西。
filter通常接受一个函数和一个列表。它将函数应用于列表中的每一项,如果该函数返回True,则不执行任何操作。如果返回False,则从列表中删除该项目。
语法如下:
filter(function, list)
让我们看看一个小例子,没有过滤器,我们会写:
x = range(-5, 5)
new_list = []
for num in x:
if num < 0:
new_list.append(num)
有了过滤器,这就变成:
x = range(-5, 5)
all_less_than_zero = list(filter(lambda num: num < 0, x))
高阶函数
高阶函数可以将函数作为参数并返回函数。一个非常简单的例子如下:
def summation(nums):
return sum(nums)
def action(func, numbers):
return func(numbers)
print(action(summation, [1, 2, 3]))
partial application
部分应用程序(也称为闭包)有点奇怪,但是非常酷。您可以调用一个函数而不提供它需要的所有参数。我们来看一个例子。我们想要创建一个函数,它有两个参数,一个底数和一个指数,并返回底数的指数次方,就像这样:
def power(base, exponent): return base ** exponent
现在我们想要一个专门的平方函数,用幂函数求出一个数的平方:
def square(base): return power(base, 2)
这是可行的,但如果我们想要一个立方体函数呢?或者是函数的4次方?我们能一直写下去吗?嗯,你可以。但是程序员很懒。如果你一遍又一遍地重复同样的事情,这是一个信号,表明有一种更快的方法可以加快速度,让你不再重复。我们可以在这里使用部分应用程序。让我们看一个例子的平方函数使用部分应用程序:
from functools import partial?square = partial(power, exponent=2)print(square(2))
这是不是很酷!我们可以调用需要两个参数的函数,只需使用一个参数就可以告诉Python第二个参数是什么。
参考:https://medium.com/hackernoon/learn-functional-python-in-10-minutes-to-2d1651dece6f
相关推荐
- Linux 网络协议栈_linux网络协议栈
-
前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...
- 揭秘 BPF map 前生今世_bpfdm
-
1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...
- 教你简单 提取fmpeg 视频,音频,字幕 方法
-
ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...
- Linux内核原理到代码详解《内核视频教程》
-
Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...
- Linux C Socket UDP编程详解及实例分享
-
1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...
- libevent源码分析之bufferevent使用详解
-
libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...
- 一次解决Linux内核内存泄漏实战全过程
-
什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...
- 彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏
-
作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...
- linux网络编程常见API详解_linux网络编程视频教程
-
Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道
-
在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...
- 谈谈分布式文件系统下的本地缓存_什么是分布式文件存储
-
在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...
- 进程间通信之信号量semaphore--linux内核剖析
-
什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...
- Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门
-
一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...
- 30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南
-
30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)