【强强联合】在Power BI 中使用Python(2)——数据清洗
off999 2024-09-16 00:48 34 浏览 0 评论
?上一篇文章我们讲解了在Power BI中使用Python来获取数据的一些应用:
「强强联合」在Power BI 中使用Python(1)——导入数据
这一篇我们将继续讲解如何在Power BI中使用Python进行数据清洗工作。
其实我们仔细看一下场景1和场景2,它们之间是个逆过程,场景1是从Python获取数据传递到Power BI,而场景2是Power BI或者Power Query获取了数据,用python来处理。
那么这个逆过程应该如何操作呢?话不多说,抓紧上车:
前文我们讲过,Python与Power BI的数据传递是通过Dataframe格式的数据来实现的。
Python的处理结果以Dataframe形式输出,M将Dataframe自动转换为Table格式。M将其Table类型的数据传递给Python,Python会自动将Table转换为Dataframe。
举个简单的例子:
首先我们进入Power Query管理器界面,通过新建一个空查询,并建立一个1到100的列表,再将其转换为表:
# 'dataset' 保留此脚本的输入数据然后点击“转换-运行Python脚本”:
脚本编辑器中自带一句话:
import pandas as pd一行以“#”开头的语句,在Python的规范中表示注释,所以这句话并不会运行,它的意思是将你要进行修改的表用dataset来表示,也就是说Python是通过dataset变量来访问数据的。
理论上我们需要在这个地方键入:
import pandas as pd以表示我们要使用pandas库,但是Power BI在调用Python时,自动导入了pandas和matplotlib库,所以这一行写不写都一样,我们知道下面的代码是在调用pandas库即可。
在脚本编辑器输入框中输入以下代码:
dataset.insert(loc=1,column="add_100",value=dataset["Value"]+100)dataset就是源数据表自动换换的dataframe格式数据,“loc=1”代表在第一列数据后插入一列,列名是“add_100”,值是“Value”的值+100,第一行是1,add_100列第一行就是101,以此类推:
点击运行,得到的是一个子表,将其展开:
准确无误。
当然,我们也可以继续在这个表里进行一系列操作,比如复制一张表,再创建一个新dataframe表:
运行,得到结果:
再比如,我们想提取数据的某列,比如上面这张表的“key2”列,我们可以点击运行Python脚本,并写入如下的代码:
(power query自动对Python添加 #(lf) 用来进行转义)
当然,以上所说这些功能直接在powerquery中就可以实现,甚至更简单便捷,所以上述内容都是些:
吗?
并!不!是!以上只是在循序渐进地告诉大家,powerquery中是可以用Python进行数据清洗的,并且清楚地告诉大家调用Python的方法,大家应该很熟练了吧。
以下才是重点(当然上面也是):
在powerquery数据清洗中使用较多的Python功能一定会有正则,因为powerquery本身是没有正则的,所以这时候调用Python来进行正则就显得尤为重要,否则你可能需要在powerquery中添加很多步骤也不一定能得到想要的结果。
比如下面这个例子:
真实情况可能远远比这个复杂。
这种数据如果已经导入到Power BI中,在powerquery里是没有办法直接进行处理的,这时候就可以调用Python的re正则表达式了:
import reimport json?# 自定义获取文本电子邮件的函数def get_find_emails(text): emails = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", text) emails=';'.join(emails) return emails?# 自定义获取文本手机号函数def get_findAll_mobiles(text): mobiles = re.findall(r"1\d{10}", text) mobiles =';'.join(mobiles) return mobiles?email_list=[]tele_list=[]for i in range(len(dataset)): text=dataset.iat[i,1] email=get_find_emails(text) email_list.append(email) tele=get_findAll_mobiles(text) tele_list.append(tele) dataset['email']=email_listdataset['tele']=tele_list正则表达式的使用,大家可以进行相关搜索和学习,网上资源还是很多的。
这段代码定义了两个函数:get_find_emails(自定义获取文本电子邮件的函数)和get_find_mobiles(自定义获取文本手机号函数),得到两个list,最后再放入dataset数据表中。
在IDE中运行无误后复制到powerquery的Python脚本编辑器中:
点击确定,返回结果:
后面两列就是我们想要的手机号和邮箱了。
这样我们就实现了在powerquery中使用正则表达式对数据进行清洗的目的。
当然,也可以调用R、PHP或者js来实现相同的目的,方法大同小异,各位读者可以自行研究。
本文讲解了在powerquery中进行数据清洗工作时如何运用Python来实现一些特定的功能。当然,数据清洗的整个流程是复杂多变的,结合本文所讲的内容,希望大家都能充分挖掘powerquery和Python在数据清洗过程中的优缺点,结合起来使用,势必能事半功倍。
下一篇我们将继续讲解如何使用Python的matplotlib库在Power BI中进行可视化呈现。
感谢您对【学谦数据运营】的关注,支持与厚爱,如果您觉得本文对您有用,请不要吝惜您的点赞、转发、点亮在看,有任何问题欢迎大家在留言区留言,谢谢。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
慕ke 前端工程师2024「完整」
-
8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
