神器!使用Python 轻松识别验证码(python用模块实现验证码生成)
off999 2024-10-22 13:32 18 浏览 0 评论
前言
在我们进行自动化测试的过程中,免不了要在登录时遇到验证码,很多时候我们都是只能找开发要万能验证码或者暂时关闭验证码这个功能,但是有时候我们必须要验证码是否能够正常生成,所以在这个时候,我们需要做的就是输入验证码,但是验证码这个东西是随机生成的,不是每一次都一样,所以我们还是需要识别然后输入,脚本是没有眼睛的,只能通过代码来进行识别,所以本文就来给大家介绍一下如何使用Python来轻松识别数字验证码。
安装Python库和软件环境
验证码识别需要用到一些Python库和软件环境,下面将介绍它们的安装步骤。
- 安装Tesseract OCR
它是一个开源的光学字符识别引擎,用于识别验证码中的文本内容,能够识别70多种语言的文本,并为开发者提供简单易用的API。可以通过以下链接下载和安装:https://github.com/tesseract-ocr/tesseract 。在Windows系统下可以下载exe文件进行安装。
注:Tesseract安装完成后需要将tesseract.exe文件路径加入系统的环境变量,否则无法在Python脚本中调用。
- 所需Python库
验证码识别需要使用的Python库包括:pillow(PIL)、pytesseract和opencv-python。pillow为Python自带的标准库,其它库可以使用pip命令自动安装:
pythonpip install pytesseract
pip install opencv-python
识别简单的数字验证码
- 准备验证码图片
首先,我们需要准备一些验证码图片。可以在网络上搜索验证码图片进行下载,或者使用Python的爬虫程序去爬取目标网站的验证码。这里我们先手动下载一个简单的数字验证码图片,保存为“test.jpg”。
- 加载验证码图片
我们可以使用Pillow库(Python Imaging Library)加载验证码图片。Pillow库可以读取和处理不同类别的图片格式,如jpg、png、bmp等等。代码如下:
pythonfrom PIL import Image
img = Image.open('test.jpg')
img.show()
- 识别验证码
使用pytesseract库,我们可以很容易地把图片中的数字识别出来。pytesseract库依赖于Tesseract OCR引擎,能够处理各种难度的验证码,如数字、字母、汉字、倾斜、变形等等。代码如下:
pythonimport pytesseract
text = pytesseract.image_to_string(Image.open('test.jpg'), lang='eng')
print(text)
这段代码的意思是用pytesseract库将图片中的字符串转换为字符。lang参数可以指定识别的语言类型,这里我们使用了eng,表示英文。如果验证码是汉字,设置为chi_sim即可。
识别数字字母混合的验证码
当验证码中既包含数字又包含字母时,需要对识别的方法进行修改,下面介绍一种简单的处理方法,即通过二值化和降噪处理来增加识别率。
二值化处理
二值化处理就是将图片中的所有像素转换为黑白两种颜色。对于验证码图片,我们可以将其转换为黑白灰度图像,便于后续的处理。代码如下:
pythonimport cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Image', threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()
这段代码用OpenCV库将图片读取为灰度图像,并进行二值化处理。其中,127是阈值,值越小,黑色部分就越多,白色部分就越少。运行后可以得到二值化后的图片。
降噪处理
在二值化后,图片中仍有一些噪点和干扰线条。如果不处理这些噪声,将会影响后续的字符识别,因此需要进行降噪处理,将图片中的噪点和干扰线条消除。代码如下:
pythonimport cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
blur = cv2.GaussianBlur(threshold,(5,5),0)
cv2.imshow('Image', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()
这段代码使用高斯滤波函数对图片进行平滑处理,消除噪声和干扰线条。其中(5,5)指定核的大小,值越大,平滑效果越明显。运行后可以得到处理后的图片。
识别验证码
对于数字和字母混合的验证码,我们需要对每个字符进行识别。可以采用字符分割的方法,将验证码图片分割成单个字符图片,再进行字符识别。代码如下:
pythonimport pytesseract
import cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
blur = cv2.GaussianBlur(threshold, (5,5), 0)
contours, hierarchy = cv2.findContours(blur, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
count = 0
for contour in contours:
(x,y,w,h) = cv2.boundingRect(contour)
if w > 10 and h > 10:
roi = blur[y:y+h, x:x+w]
cv2.imwrite(str(count)+'.jpg', roi)
text = pytesseract.image_to_string(roi, lang='eng')
print(text)
count += 1
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
这段代码先对图片进行二值化和降噪处理,然后使用findContours函数找到并分割出每个字符的边缘轮廓。再使用boundingRect函数得到每个字符的位置和大小,并使用image_to_string函数对每个字符进行字符识别。运行代码后,可以看到输出结果为分割出的每个字符及其识别结果。
总结
本文介绍了如何使用 Python 和相关库来识别数字验证码。通过这种方法,我们可以实现验证码的自动识别,用于自动化测试、爬虫程序或其他需要验证码处理的场景。在实际应用中,可以根据具体的需求对识别方法进行进一步优化和调整,以获得更好的识别效果。
相关推荐
- 推荐一款Python的GUI可视化工具(python 可视化工具)
-
在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...
- 教你用Python绘制谷歌浏览器的3种图标
-
前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....
- 小白学Python笔记:第二章 Python安装
-
Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...
- Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字
-
Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...
- 一文吃透Python虚拟环境(python虚拟环境安装和配置)
-
摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...
- 小白也可以玩的Python爬虫库,收藏一下
-
最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...
- python环境安装+配置教程(python安装后怎么配置环境变量)
-
安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...
- colorama,一个超好用的 Python 库!
-
大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...
- python制作仪表盘图(python绘制仪表盘)
-
今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...
- 总结90条写Python程序的建议(python写作)
-
1.首先 建议1、理解Pythonic概念—-详见Python中的《Python之禅》 建议2、编写Pythonic代码 (1)避免不规范代码,比如只用大小写区分变量、使用容易...
- [oeasy]python0137_相加运算_python之禅_import_this_显式转化
-
变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...
- Python入门学习记录之一:变量(python中变量的规则)
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- 掌握Python的"魔法":特殊方法与属性完全指南
-
在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...
- 11个Python技巧 不Pythonic 实用大于纯粹
-
虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...
- Python 从入门到精通 第三课 诗意的Python之禅
-
导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)