百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用Python进行数据分析和自动化(用python如何进行数据分析)

off999 2024-10-22 13:39 27 浏览 0 评论

组织严重依赖数据分析和自动化来提高运营效率。在本文中,我们将使用 Python(一种用于通用编程的高级编程语言)的示例来研究数据分析和自动化的基础知识。

什么是数据分析?

数据分析是指检查、清理、转换和建模数据的过程,以便识别有用的信息、得出结论并支持决策。这是一项重要的活动,有助于将原始数据转化为可操作的见解。以下是数据分析涉及的关键步骤:

  1. 收集:从不同来源收集数据。
  2. 清理:删除或纠正收集的数据集中的不准确和不一致性。
  3. 转换:将收集的数据集转换为适合进一步分析的格式。
  4. 建模:在转换后的数据集上应用统计或机器学习模型。
  5. 可视化:使用合适的工具(例如 MS Excel 或 Python 的 matplotlib 库)创建图表、图形等,以直观的方式呈现调查结果。

数据自动化的重要性

数据自动化涉及使用技术来执行与处理大?型数据集相关的重复性任务,并且只需极少的人工干预。自动化这些流程可以大大提高效率,从而为分析师节省时间,让他们可以更专注于复杂的任务。它的一些常见应用领域包括:

  • 数据提取:自动从各种来源收集和存储数据。
  • 数据清理和转换:在对收集的数据集执行建模或可视化等其他操作之前,使用脚本或工具(例如 Python Pandas 库)对其进行预处理。
  • 报告生成:创建自动报告或仪表板,每当新记录到达我们的系统等时,它们就会自行更新。
  • 数据集成: 将从多个来源获得的信息结合起来,以便在决策过程中进一步分析时获得整体视图。

Python 数据分析简介

Python是一种广泛用于数据分析的编程语言,因为它简单易读,并且有大量可用于统计计算的库。以下是一些简单示例,演示了如何使用 Python 读取大型数据集以及执行基本分析:

读取大型数据集

将数据集读入您的环境是任何数据分析项目的初始阶段之一。在这种情况下,我们将需要提供强大数据操作和分析工具的 Pandas 库。

Python

 将pandas 导入为 pdbr
br
# 定义大数据集的文件路径br
file_path = '路径/到/large_dataset.csv'br
br
# 指定块大小(每个块的行数)br
块大小= 100000br
br
# 初始化一个空列表来存储结果br
结果= []br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
    # 对每个块进行基本分析br
    # 示例:计算特定列的平均值br
    chunk_mean = chunk [ 'column_name' ]. mean ()br
    结果.append ( chunk_mean )br
br
# 从每个块的结果计算总体平均值br
总体平均值=总和(结果)/ 长度(结果)br
打印(f'column_name 的总体平均值:{overall_mean}')br

基础数据分析

加载数据后,重要的是对其进行一些初步检查,以熟悉其内容。

执行聚合分析

有时您可能希望对整个数据集执行更高级的聚合分析。例如,假设我们想通过分块处理来查找整个数据集中某一列的总和。

Python

# 初始化一个变量来存储累计和br
累计总和= 0br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
    # 计算当前块的特定列的总和br
    chunk_sum = chunk [ 'column_name' ]. sum ()br
    累积总和+=块总和br
br
打印(f'column_name 的累计总和:{cumulative_sum}')

分块处理缺失值

在数据预处理过程中,缺失值很常见。这里是使用每个块的平均值填充缺失值的一个例子。

Python

# 初始化一个空的 DataFrame 来存储处理后的块br
已处理的数据块= []br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
    # 使用块的平均值填充缺失值br
    chunk . fillna ( chunk . mean (), inplace = True )br
    processing_chunks.append ( chunk )br
br
# 将所有处理过的块连接成一个 DataFramebr
处理后的数据= pd.concat (处理后的块,轴= 0 )br
打印(processed_data.head())

区块的最终统计数据

有时,需要从所有块中获取总体统计数据。此示例说明如何通过聚合每个块的结果来计算整个列的平均值和标准差。

Python

 将numpy 导入为 npbr
br
# 初始化变量来存储累计总和和计数br
累计总和= 0br
累计计数= 0br
平方和= 0br
br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
    # 计算当前块的总和和计数br
    chunk_sum = chunk [ 'column_name' ]. sum ()br
    chunk_count = chunk [ 'column_name' ]. count ()br
    chunk_squared_sum = ( chunk [ 'column_name' ] **  2 ).sum ()复制代码br
    br
    累积总和+=块总和br
    累积计数+=块计数br
    squared_sum += chunk_squared_sumbr
br
# 计算平均值和标准差br
总体平均值=累积总和 / 累积计数br
总体标准差= np.sqrt ( (平方和/累计计数) - (总体平均值** 2 ))    br
打印(f'column_name 的总体平均值:{overall_mean}')br
print ( f'column_name 的总体标准差:{overall_std}' )

结论

使用 Python 分块读取大型数据集有助于高效地处理和分析数据,而不会占用过多的系统内存。通过利用 Pandas 的分块功能,可以在大型数据集上完成涉及数据分析的各种任务,同时确保可扩展性和效率。提供的示例说明了如何分部分读取大型数据集、解决缺失值以及执行聚合分析;从而为使用 Python 处理大量数据奠定了坚实的基础。

相关推荐

python入门到脱坑经典案例—清空列表

在Python中,清空列表是一个基础但重要的操作。clear()方法是最直接的方式,但还有其他方法也可以实现相同效果。以下是详细说明:1.使用clear()方法(Python3.3+推荐)...

python中元组,列表,字典,集合删除项目方式的归纳

九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这四种集合数据类型,今天就对这四种集合数据类型中删除项目的操作做个总结性的归纳。列表(List)是一种有序和可更改的集合。允许重复...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

数据结构与算法——链式存储(链表)的插入及删除,

持续分享嵌入式技术,操作系统,算法,c语言/python等,欢迎小友关注支持上篇文章我们讲述了链表的基本概念及一些查找遍历的方法,本篇我们主要将一下链表的插入删除操作,以及采用堆栈方式如何创建链表。链...

Python自动化:openpyxl写入数据,插入删除行列等基础操作

importopenpyxlwb=openpyxl.load_workbook("example1.xlsx")sh=wb['Sheet1']写入数据#...

在Linux下软件的安装与卸载(linux里的程序的安装与卸载命令)

通过apt安装/协助软件apt是AdvancedPackagingTool,是Linux下的一款安装包管理工具可以在终端中方便的安装/卸载/更新软件包命令使用格式:安装软件:sudoapt...

Python 批量卸载关联包 pip-autoremove

pip工具在安装扩展包的时候会自动安装依赖的关联包,但是卸载时只删除单个包,无法卸载关联的包。pip-autoremove就是为了解决卸载关联包的问题。安装方法通过下面的命令安装:pipinsta...

用Python在Word文档中插入和删除文本框

在当今自动化办公需求日益增长的背景下,通过编程手段动态管理Word文档中的文本框元素已成为提升工作效率的关键技术路径。文本框作为文档排版中灵活的内容容器,既能承载多模态信息(如文字、图像),又可实现独...

Python 从列表中删除值的多种实用方法详解

#Python从列表中删除值的多种实用方法详解在Python编程中,列表(List)是一种常用的数据结构,具有动态可变的特性。当我们需要从列表中删除元素时,根据不同的场景(如按值删除、按索引删除、...

Python 中的前缀删除操作全指南(python删除前导0)

1.字符串前缀删除1.1使用内置方法Python提供了几种内置方法来处理字符串前缀的删除:#1.使用removeprefix()方法(Python3.9+)text="...

每天学点Python知识:如何删除空白

在Python中,删除空白可以分为几种不同的情况,常见的是针对字符串或列表中空白字符的处理。一、删除字符串中的空白1.删除字符串两端的空白(空格、\t、\n等)使用.strip()方法:s...

Linux系统自带Python2&yum的卸载及重装

写在前面事情的起因是我昨天在测试Linux安装Python3的shell脚本时,需要卸载Python3重新安装一遍。但是通过如下命令卸载python3时,少写了个3,不小心将系统自带的python2也...

如何使用Python将多个excel文件数据快速汇总?

在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...

【第三弹】用Python实现Excel的vlookup功能

今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...

python中pandas读取excel单列及连续多列数据

案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...

取消回复欢迎 发表评论: