实例Python并发编程(python并发原理)
off999 2024-10-23 12:40 30 浏览 0 评论
我们知道现在硬件飞速发展,多核CPU 成了标配。为了提高程序的效率,一个方面改变程序的顺序执行,用异步方式,防止由于某个耗时步骤,而影响后续程序的执行。另一个方面是采用并发方式执行,重复利用多核CPU优势加速执行。关于并发编程大家可能比较熟悉的是Golang的协程、通道和Node.js 的async.parallel异步并发编程。就并发编程来说,Python不是一门合适的语言,主要是Python有一个解析器(CPython)内置的全局解释锁GIL。 GIL限制Python中一次只能有一个线程访问Python对象,从而我们无法实现多线程分配到多个CPU执行,这是一个极大限制,限制Python并发编程。当然限制归限制,Python标准库中都已经引入了多进程和多线程库,所以Python并发程序相当简单。
本文中,虫虫给大家实例介绍一下Python的并发编程
并发编程
关于python并发编程,我们推荐优雅地创建并发程序三部曲:
首先,编写一个按顺序执行任务的脚本。
其次,脚本中的执行程序(耗时任务)提取为一个执行函数,并使用map函数调用。
最后,使用并发模块中的函数替换map即可。
实例脚本
该实例中,我们用到一个小的图片爬虫,使用urllib从Picsum网站下载20张图片,具体脚本程序如下:
import urllib.request import time url = 'https://picsum.photos/id/{}/200/300' args = [(n, url.format(n)) for n in range(20)] start = time.time() for pic_id, url in args: res = urllib.request.urlopen(url) pic = res.read() with open(f'./{pic_id}.jpg', 'wb') as f: f.write(pic) print(f'图片 {pic_id} 已经保存!') end = time.time() msg ='共耗时 {:.3f} 秒下载完成。' print(msg.format(end-start)
python pic_get.py 运行该脚本,结果如下:
图片 0 已经保存! 图片 1 已经保存! 图片 2 已经保存! ... 共耗时 26.694 秒下载完成。
下载共耗费不到半分钟,接着按照我们优雅的三部曲,改造这个脚本。
使用Map改造脚本
下面脚本中,我们将下载图片的代码打包到一个执行函数get_img中。
import urllib.request import time def get_img(pic_id, url): res = urllib.request.urlopen(url) pic = res.read() with open(f'test/{pic_id}.jpg', 'wb') as f: f.write(pic) print(f'图片 {pic_id} 已经保存!') def main(): url = 'https://picsum.photos/id/{}/200/300' pic_ids = [i for i in range(20)] ; urls=[(url.format(n)) for n in range(20)] start = time.time() for _ in map(get_img, pic_ids, urls): pass end = time.time() msg = '共耗时{:.3f}秒下载完成。' print(msg.format(end-start)) if __name__ == '__main__': main()
上述脚本中,用map函数替换先前脚本中的for循环(黑体部分)。map是一个函数式编程语法,该函数会生成一个迭代器,迭代器会执行迭代调用get_img()。关于map()函数熟悉函数式编程人可能会觉得有点奇怪,请自己搜索资料充电,此处,我们用它来充当并发编程网关。
图片 0 已经保存! 图片 1 已经保存! 图片 2 已经保存! ... 图片 19 已经保存! 共耗时26.023秒下载完成。
用map改造后,运行脚本总耗时大体上和脚本一致。
多线程并发处理
Python标准库的current.futures模块包含了大量并发编程的包装函数,详细说明,可参见官方文档,此处我们直接上代码。
将pic_get1.py中的程序做简单改进,就能实现多线程脚本:
首先在脚本开头引入多线程函数:
from concurrent.futures import ThreadPoolExecutor
接着替换
for _ in map(get_img, pic_ids, urls): pass
为
with ThreadPoolExecutor(max_workers=20) as do: do.map(get_img, pic_ids, urls)
即可。执行结果:
图片 0 已经保存! 图片 2 已经保存! 图片 5 已经保存! ... 图片 9 已经保存! 共耗时2.913秒下载完成。
总耗时由26秒,减少到了大约3秒。大概快了8倍。并发执行的效果还是杠杠的。
程序中我们使用with ThreadPoolExecutor语句产生一个执行器do。通过将get_img和相应的参数映射到执行程序,自动生成多线程执行。
大家可能注意到了在多线程脚本执行后,图片下载时候不是以前的0~19的顺序的,而是不同线程并发执行的所以完成提示信息也是乱序的。
多进程处理
多进程的改造也非常简单,我么只需把之前多线程脚本中的ThreadPoolExecutor替换为ProcessPoolExecutor即可。
from concurrent.futures import ProcessPoolExecutor
...
with ProcessPoolExecutor(max_workers=20) as do: do.map(get_img, pic_ids, urls)
执行结果:
图片 9 已经保存! 图片 6 已经保存! ... 图片 11 已经保存! 图片 15 已经保存! 共耗时4.606秒下载完成
也非常快了,4秒钟就完成了,但是比多线程的3秒,稍微慢点。为什么多进程要比多线程慢呢?顾名思义,多进程程序会启用多个进程,而多线程会使用线程。Python中一个进程可以运行多个线程。每个进程都有其适当的Python解释器和适当的GIL。相比较而已,启动一个进程是更加耗时,重的操作,所以需要花费的时间更多。
斐波那契数列计算
为了进一步说明Python中线程和进程之间的区别,我们再来举一个大量计算的例子,斐波那契数列的计算。
根据斐波那契数列的定义我们用递归方法编写实现其计算:
def fib(n): if n == 1: return 0 elif n == 2: return 1 else: return fib(n-1) + fib(n-2)
在不使用numpy的情况下用普通Python计算比较慢:
def main(): fib_range = list(range(1, 35)) times = [] for run in range(10): start = time.time() for n in fib_range: fib(n) end = time.time() times.append(end-start) print('波那契数列fib(35)计算平均耗时 {:.3f}。'.format(np.mean(times))
结果:
波那契数列fib(35)计算平均耗时 5.200
下面我们试着用并发计算来加速计算。
让我们通过线程加速它!为此,我用受信任的ThreadPoolExecutor替换for循环,如下所示:
with ProcessPoolExecutor() as do: do.map(fib, fib_range)
执行结果:
波那契数列fib(35)计算平均耗时 5.239。
什么?加速后,反而慢,好像多线程没起到作用。这就是GIL的因素导致的,尽管使用了多个线程,生成了一堆线程,但是这些线程都在同一进程中运行并共享一个GIL。所以斐波那契序列尽管是并发计算的,这些线程在只能在一个CPU上循序执行。
进程可以分布在不同的CPU核心,而在同一进程上运行的线程则不能。使CPU消耗最大的操作为CPU绑定操作。为了加快CPU限制的操作,应该启动多个进程计算。我们用ProcessPoolExecutor替换ThreadPoolExecutor再试试:
波那契数列fib(35)计算平均耗时 3.591
性能提高了一点。
除了并发的方式外,我们可以用算法优化方法来提高性能,在数值计算中,这是一种更有效的方法,比如,我们改造fib函数:
def fib(n): a, b, i = 0, 1, 1 while i < n: a, b = b, a + b i += 1 return b
上述方法中,巧妙用内存存中的变量历史迭代的前两次结果都存在内存中,所以该次计算中无需回溯迭代计算,这样计算效率O(1),基本上可以秒出结果。
使用新算法后的执行结果:
波那契数列fib(35)计算平均耗时 0.000。
总结
本文我们实例介绍了Python中的并发编程,关于并发编程由于标准库中给我们打包好了方便使用的并发函数使得其使用非常方便。需要注意的是Python中的并发不管是多线程在IO操作中是有效的,而在其他方面,如数值结算时候就受GIL限制无用了。关于并发计算和GIL有心的话,可以参考有关文档进一步深入学习了解。
相关推荐
- 大文件传不动?WinRAR/7-Zip 入门到高手,这 5 个技巧让你效率翻倍
-
“这200张照片怎么传给女儿?微信发不了,邮箱附件又超限……”62岁的张阿姨对着电脑犯愁时,儿子只用了3分钟就把照片压缩成一个文件,还教她:“以后用压缩软件,比打包行李还方便!”职场人更懂这...
- 电脑解压缩软件推荐——7-Zip:免费、高效、简洁的文件管理神器
-
在日常工作中,我们经常需要处理压缩文件。无论是下载软件包、接收文件,还是存储大量数据,压缩和解压缩文件都成为了我们日常操作的一部分。而说到压缩解压软件,7-Zip绝对是一个不可忽视的名字。今天,我就来...
- 设置了加密密码zip文件要如何打开?这几个方法可以试试~
-
Zip是一种常见的压缩格式文件,文件还可以设置密码保护。那设置了密码的Zip文件要如何打开呢?不清楚的小伙伴一起来看看吧。当我们知道密码想要打开带密码的Zip文件,我们需要用到适用于Zip格式的解压缩...
- 大文件想要传输成功,怎么把ZIP文件分卷压缩
-
不知道各位小伙伴有没有这样的烦恼,发送很大很大的压缩包会受到限制,为此,想要在压缩过程中将文件拆分为几个压缩包并且同时为所有压缩包设置加密应该如何设置?方法一:使用7-Zip免费且强大的文件管理工具7...
- 高效处理 RAR 分卷压缩包:合并解压操作全攻略
-
在文件传输和存储过程中,当遇到大文件时,我们常常会使用分卷压缩的方式将其拆分成多个较小的压缩包,方便存储和传输。RAR作为一种常见的压缩格式,分卷压缩包的使用频率也很高。但很多人在拿到RAR分卷...
- 2个方法教你如何删除ZIP压缩包密码
-
zip压缩包设置了加密密码,每次解压文件都需要输入密码才能够顺利解压出文件,当压缩包文件不再需要加密的时候,大家肯定想删除压缩包密码,或是忘记了压缩包密码,想要通过删除操作将压缩包密码删除,就能够顺利...
- 速转!漏洞预警丨压缩软件Winrar目录穿越漏洞
-
WinRAR是一款功能强大的压缩包管理器,它是档案工具RAR在Windows环境下的图形界面。该软件可用于备份数据,缩减电子邮件附件的大小,解压缩从Internet上下载的RAR、ZIP及其它类...
- 文件解压方法和工具分享_文件解压工具下载
-
压缩文件减少文件大小,降低文件失效的概率,总得来说好处很多。所以很多文件我们下载下来都是压缩软件,很多小伙伴不知道怎么解压,或者不知道什么工具更好,所以今天做了文件解压方法和工具的分享给大家。一、解压...
- [python]《Python编程快速上手:让繁琐工作自动化》学习笔记3
-
1.组织文件笔记(第9章)(代码下载)1.1文件与文件路径通过importshutil调用shutil模块操作目录,shutil模块能够在Python程序中实现文件复制、移动、改名和删除;同时...
- Python内置tarfile模块:读写 tar 归档文件详解
-
一、学习目标1.1学习目标掌握Python内置模块tarfile的核心功能,包括:理解tar归档文件的原理与常见压缩格式(gzip/bz2/lzma)掌握tar文件的读写操作(创建、解压、查看、过滤...
- 使用python展开tar包_python拓展
-
类Unix的系统,打包文件经常使用的就是tar包,结合zip工具,可以方便的打包并解压。在python的标准库里面有tarfile库,可以方便实现生成了展开tar包。使用这个库最大的好处,可能就在于不...
- 银狐钓鱼再升级:白文件脚本化实现GO语言后门持久驻留
-
近期,火绒威胁情报中心监测到一批相对更为活跃的“银狐”系列变种木马。火绒安全工程师第一时间获取样本并进行分析。分析发现,该样本通过阿里云存储桶下发恶意文件,采用AppDomainManager进行白利...
- ZIP文件怎么打开?2个简单方法教你轻松搞定!
-
在日常工作和生活中,我们经常会遇到各种压缩文件,其中最常见的格式之一就是ZIP。ZIP文件通过压缩数据来减少文件大小,方便我们进行存储和传输。然而,对于初学者来说,如何打开ZIP文件可能会成为一个小小...
- Ubuntu—解压多个zip压缩文件.zip .z01 .z02
-
方法将所有zip文件放在同一目录中:zip_file.z01,zip_file.z02,zip_file.z03,...,zip_file.zip。在Zip3.0版本及以上,使用下列命令:将所有zi...
- 如何使用7-Zip对文件进行加密压缩
-
7-Zip是一款开源的文件归档工具,支持多种压缩格式,并提供了对压缩文件进行加密的功能。使用7-Zip可以轻松创建和解压.7z、.zip等格式的压缩文件,并且可以通过设置密码来保护压缩包中的...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)