百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python之函数式编程:funcy,功能更加齐全的函数式编程库

off999 2024-10-23 12:41 26 浏览 0 评论

引言

通过前面的关于Python中进行函数式编程的系列文章的介绍,我们已经把函数式编程范式中的相关特性,以及Python内置的类、functools模块对函数式编程范式的支持,都介绍了一遍。

今天这篇文章,打算介绍一个支持Python更好地进行函数式编程的三方模块:funcy。

本文的主要内容有:

1、funcy模块的简单介绍

2、funcy中的三大件:map、filter和reduce

3、柯里化和偏函数的支持

4、组合函数的支持

5、funcy中的其他特性


funcy模块的简单介绍

funcy模块是一个用于函数式编程的Python三方模块,该模块提供了絮叨简洁且强大的函数和工具,用于简化函数式编程的开发。

funcy模块旨在使Python编程更具有声明性和功能性,进一步减少代码的冗余,同时提高代码的可读性和可维护性。

安装funcy
funcy模块的安装很简单,直接使用pip进行安装即可:

pip install funcy

说明:根据各自不同的环境,可能是pip3,不要机械的复制。


源码地址

https://github.com/Suor/funcy

感兴趣的可以自行查阅。


funcy中的三大件:map、filter和reduce

首先看下定义:

从定义中,我们可以看到,funcy模块中的map和filter是函数,但是函数体实现中,还是使用了Python内置的map和filter类。

不同于functools.reduce,funcy中的规约功能,函数名为reductions()。

下面,我们通过代码进行演示、验证:

import funcy as fn

# 测试funcy模块的map函数
square_nums = fn.map(lambda x: x * x, range(10))
print(square_nums)
# funcy模块的map函数的返回值,确实是内置类map的实例化对象
print(isinstance(square_nums, map))
print(list(square_nums))
print('=' * 40)
# 测试filter
odd_nums = fn.filter(lambda x: x % 2 == 1, range(10))
print(odd_nums)
print(isinstance(odd_nums, filter))
print(list(odd_nums))
print('=' * 40)
# 测试reduce
sum_result = fn.reductions(lambda x, y: x + y, range(10), acc=100)
print(sum_result)
print(sum_result.__next__())
print(sum_result.__next__())
print(sum_result.__next__())
print(fn.last(sum_result))

执行结果:

从定义及代码的验证中,可以得知:

1、funcy模块中的map()函数和filter()函数,本质上都是返回Python内置的map和filter内置类的实例化对象,从而实现map和filter算子的逻辑。

2、需要特别说明的是,funcy模块中的reductions()函数,不同于functools中的reduce()函数,reductions()是延迟计算的逻辑,返回的是一个生成器。

3、funcy模块中提供了快速访问序列、生成器等的实用函数,比如last()可以获取序列或者生成器中的最后一个元素。


柯里化和偏函数的支持

首先看下funcy模块中的curry()的定义:

通过代码验证一下funcy.curry()的使用:

import funcy as fn


# 模拟一个相加的多元函数
def add(x, y, z):
    return x + y + z


# 自定义实现柯里化的方法
def inner_curried_add(x):
    def add_y(y):
        def add_z(z):
            return x + y + z

        return add_z

    return add_y


# 使用funcy实现柯里化

funcy_curried_add = fn.curry(add)
print(funcy_curried_add)
print(add(1, 2, 3))
print('=' * 20)
print(inner_curried_add(1)(2)(3))
print('=' * 20)
print(funcy_curried_add(1)(2)(3))

执行结果:


接下来,再看下funcy模块中的偏函数的功能:

import funcy as fn
import functools


# 模拟一个相加的多元函数
def add(x, y, z):
    return x + y + z


# functools的偏函数功能
functools_add_one = functools.partial(add, 1)
print(functools_add_one)
print(functools_add_one(2, 3))
print('=' * 40)

# funcy的偏函数功能
funcy_add_one = fn.partial(add, 1)
print(funcy_add_one)
print(funcy_add_one(2, 3))

执行结果:


可以看到funcy模块中的偏函数本质上就是functools中的partial类。

从定义中也可以看出:


组合函数的支持

funcy模块中的compose()可以将多个函数组合,从而生成一个新的函数。可以用于进行纯函数的复用、组合,实现对数据的流水线式处理的功能。

从定义中可以看出,compose()函数的功能,是通过叠加map和functools.reduce()来实现的。

接下来,通过实例看下compose()函数的使用:

import funcy as fn

# 实现一个 y = (x + 1) ^ 2的功能
f = fn.compose(lambda x: x ** 2, lambda x: x + 1)

print(f)
print(f(1))
print(f(10))

执行结果:

需要注意的是,最先进行的计算操作写在最后,这个顺序决定了计算的顺序。


funcy中的其他特性

funcy模块的其他特性中,需要特别关注的有两个,一个是关于序列的操作,另一个就是一些好用的装饰器。

首先看序列的操作

funcy模块支持懒序列的操作,可以在需要时生成元素,具有延迟计算的特性,从前面的reductions()函数中可以看到这一点。

通过代码简单演示一下懒序列的使用:

import funcy as fn


# 定义一个斐波那契数列的生成器
def fibonacci():
    a, b = 0, 1
    for i in range(100):
        yield a
        a, b = b, a + b


fib = fibonacci()
# 第一个
print(fn.first(fib))
# 第二个
print(fn.second(fib))
# 第n个
print(fn.nth(50, fib))
# 最后一个
print(fn.last(fib))

执行结果:

还有更多的函数可以使用,感兴趣的同学可以自行尝试。


接下来看几个比较实用的装饰器

1、retry():重试装饰器


通过代码简单试用一下:

import funcy as fn
import random


@fn.retry(3)
def random_with_fails():
    res = random.random()
    if res > 0.5:
        print(res)
        raise ValueError('Random value too large')
    return res


print(random_with_fails())

可以多运行几次,会发现有时正常返回,有时会抛异常:

2、memoize():缓存装饰器

直接通过代码演示:

import funcy as fn
import time


@fn.memoize
def add(a, b):
    print('calculating...')
    time.sleep(1)
    return a + b


print(add(10, 20))
print('=' * 40)
print(add(10, 20))
print('=' * 40)
print(add(11, 20))

执行结果:

3、ignore()装饰:忽略指定异常

同样通过代码简单使用一下:

import funcy as fn


@fn.ignore((TypeError, ZeroDivisionError), default='出现异常')
def divide(a, b):
    return a / b


print(divide(10, 20))
print('=' * 40)
# TypeError被忽略,同时返回指定的默认值
print(divide('abc', 20))
print('=' * 40)
# ZeroDivisionError被忽略,同时返回指定的默认值
print(divide(10, 0))

执行结果:


总结

本文简单介绍了Python中的三方模块funcy中的各种特性,主要是在函数式编程中的一些支持,此外,还补充了几个比较实用的装饰器。

感谢您的拨冗阅读,希望对您有所帮助。

相关推荐

python入门到脱坑经典案例—清空列表

在Python中,清空列表是一个基础但重要的操作。clear()方法是最直接的方式,但还有其他方法也可以实现相同效果。以下是详细说明:1.使用clear()方法(Python3.3+推荐)...

python中元组,列表,字典,集合删除项目方式的归纳

九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这四种集合数据类型,今天就对这四种集合数据类型中删除项目的操作做个总结性的归纳。列表(List)是一种有序和可更改的集合。允许重复...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

数据结构与算法——链式存储(链表)的插入及删除,

持续分享嵌入式技术,操作系统,算法,c语言/python等,欢迎小友关注支持上篇文章我们讲述了链表的基本概念及一些查找遍历的方法,本篇我们主要将一下链表的插入删除操作,以及采用堆栈方式如何创建链表。链...

Python自动化:openpyxl写入数据,插入删除行列等基础操作

importopenpyxlwb=openpyxl.load_workbook("example1.xlsx")sh=wb['Sheet1']写入数据#...

在Linux下软件的安装与卸载(linux里的程序的安装与卸载命令)

通过apt安装/协助软件apt是AdvancedPackagingTool,是Linux下的一款安装包管理工具可以在终端中方便的安装/卸载/更新软件包命令使用格式:安装软件:sudoapt...

Python 批量卸载关联包 pip-autoremove

pip工具在安装扩展包的时候会自动安装依赖的关联包,但是卸载时只删除单个包,无法卸载关联的包。pip-autoremove就是为了解决卸载关联包的问题。安装方法通过下面的命令安装:pipinsta...

用Python在Word文档中插入和删除文本框

在当今自动化办公需求日益增长的背景下,通过编程手段动态管理Word文档中的文本框元素已成为提升工作效率的关键技术路径。文本框作为文档排版中灵活的内容容器,既能承载多模态信息(如文字、图像),又可实现独...

Python 从列表中删除值的多种实用方法详解

#Python从列表中删除值的多种实用方法详解在Python编程中,列表(List)是一种常用的数据结构,具有动态可变的特性。当我们需要从列表中删除元素时,根据不同的场景(如按值删除、按索引删除、...

Python 中的前缀删除操作全指南(python删除前导0)

1.字符串前缀删除1.1使用内置方法Python提供了几种内置方法来处理字符串前缀的删除:#1.使用removeprefix()方法(Python3.9+)text="...

每天学点Python知识:如何删除空白

在Python中,删除空白可以分为几种不同的情况,常见的是针对字符串或列表中空白字符的处理。一、删除字符串中的空白1.删除字符串两端的空白(空格、\t、\n等)使用.strip()方法:s...

Linux系统自带Python2&yum的卸载及重装

写在前面事情的起因是我昨天在测试Linux安装Python3的shell脚本时,需要卸载Python3重新安装一遍。但是通过如下命令卸载python3时,少写了个3,不小心将系统自带的python2也...

如何使用Python将多个excel文件数据快速汇总?

在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...

【第三弹】用Python实现Excel的vlookup功能

今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...

python中pandas读取excel单列及连续多列数据

案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...

取消回复欢迎 发表评论: