百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

用Python识别验证码(python 识别验证码)

off999 2024-10-23 12:51 18 浏览 0 评论

很多网站登录都需要输入验证码,如果要实现自动登录就不可避免的要识别验证码。最近学习了一下图像处理相关的知识,并用Python实现了基于KNN的验证码识别。

准备工作

这里我们使用opencv做图像处理,所以需要安装下面两个库

pip3 install opencv-python
pip3 install numpy

识别原理

我们采取一种有监督式学习的方法来识别验证码,包含以下几个步骤

  1. 图片处理 - 对图片进行降噪、二值化处理切割图片 - 将图片切割成单个字符并保存人工标注 - 对切割的字符图片进行人工标注,作为训练集训练数据 - 用KNN算法训练数据检测结果 - 用上一步的训练结果识别新的验证码

下面我们来逐一介绍一下每一步的过程,并给出具体的代码实现。

图片处理

先来看一下我们要识别的验证码是长什么样的

可以看到,字符做了一些扭曲变换。仔细观察,还可以发现图片中间的部分添加了一些颗粒化的噪声。

我们先读入图片,并将图片转成灰度图,代码如下

import cv2
im = cv2.imread(filepath)
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

经过上面的处理,我们的彩色图片变成了下面这样

将图片做二值化处理,代码如下

ret, im_inv = cv2.threshold(im_gray,127,255,cv2.THRESH_BINARY_INV)

127是我们设定的阈值,像素值大于127被置成了0,小于127的被置成了255。处理后的图片变成了这样

接下来,我们应用高斯模糊对图片进行降噪。高斯模糊的本质是用高斯核和图像做卷积,代码如下

kernel = 1/16*np.array([[1,2,1], [2,4,2], [1,2,1]])
im_blur = cv2.filter2D(im_inv,-1,kernel)

降噪后的图片如下

可以看到一些颗粒化的噪声被平滑掉了。

降噪后,我们对图片再做一轮二值化处理

ret, im_res = cv2.threshold(im_blur,127,255,cv2.THRESH_BINARY)

现在图片变成了这样

好了,接下来,我们要开始切割图片了。

切割图片

这一步是所有步骤里最复杂的一步。我们的目标是把最开始的图片切割成单个字符,并把每个字符保存成如下的灰度图

首先我们用opencv的findContours来提取轮廓

im2, contours, hierarchy = cv2.findContours(im_res, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

我们把提取的轮廓用矩形框起来,画出来是这样的

可以看到,每个字符都被检测出来了。

但这只是理想情况,很多时候,相邻字符有粘连的会被识别成同一个字符,比如像下面的情况

要处理这种情况,我们就要对上面的图片做进一步的分割。字符粘连会有下面几种情况,我们逐一来看下该怎么处理。

4个字符被识别成3个字符

这种情况,对粘连的字符轮廓,从中间进行分割,代码如下

result = []
for contour in contours:
 x, y, w, h = cv2.boundingRect(contour)
 if w == w_max: # w_max是所有contonur的宽度中最宽的值
 box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])
 box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])
 result.append(box_left)
 result.append(box_right)
 else:
 box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])
 result.append(box)

分割后,图片变成了这样

4个字符被识别成2个字符

4个字符被识别成2个字符有下面两种情况

对第一种情况,对于左右两个轮廓,从中间分割即可。对第二种情况,将包含了3个字符的轮廓在水平方向上三等分。具体代码如下

result = []
for contour in contours:
 x, y, w, h = cv2.boundingRect(contour)
 if w == w_max and w_max >= w_min * 2:
 # 如果两个轮廓一个是另一个的宽度的2倍以上,我们认为这个轮廓就是包含3个字符的轮廓
 box_left = np.int0([[x,y], [x+w/3,y], [x+w/3,y+h], [x,y+h]])
 box_mid = np.int0([[x+w/3,y], [x+w*2/3,y], [x+w*2/3,y+h], [x+w/3,y+h]])
 box_right = np.int0([[x+w*2/3,y], [x+w,y], [x+w,y+h], [x+w*2/3,y+h]])
 result.append(box_left)
 result.append(box_mid)
 result.append(box_right)
 elif w_max < w_min * 2:
 # 如果两个轮廓,较宽的宽度小于较窄的2倍,我们认为这是两个包含2个字符的轮廓
 box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])
 box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])
 result.append(box_left)
 result.append(box_right)
 else:
 box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])
 result.append(box)

分割后的图片如下

4个字符被识别成1个字符

这种情况对轮廓在水平方向上做4等分即可,代码如下

result = []
contour = contours[0]
x, y, w, h = cv2.boundingRect(contour)
box0 = np.int0([[x,y], [x+w/4,y], [x+w/4,y+h], [x,y+h]])
box1 = np.int0([[x+w/4,y], [x+w*2/4,y], [x+w*2/4,y+h], [x+w/4,y+h]])
box2 = np.int0([[x+w*2/4,y], [x+w*3/4,y], [x+w*3/4,y+h], [x+w*2/4,y+h]])
box3 = np.int0([[x+w*3/4,y], [x+w,y], [x+w,y+h], [x+w*3/4,y+h]])
result.extend([box0, box1, box2, box3])

分割后的图片如下

对图片分割完成后,我们将分割后的单个字符的图片存成不同的图片文件,以便下一步做人工标注。存取字符图片的代码如下

for box in result:
 cv2.drawContours(im, [box], 0, (0,0,255),2)
 roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]
 roistd = cv2.resize(roi, (30, 30)) # 将字符图片统一调整为30x30的图片大小
 timestamp = int(time.time() * 1e6) # 为防止文件重名,使用时间戳命名文件名
 filename = "{}.jpg".format(timestamp)
 filepath = os.path.join("char", filename)
 cv2.imwrite(filepath, roistd)

字符图片保存在名为char的目录下面,这个目录里的文件大致是长这样的(文件名用时间戳命名,确保不会重名)

接下来,我们开始标注数据。

人工标注

这一步是所有步骤里最耗费体力的一步了。为节省时间,我们在程序里依次打开char目录中的每张图片,键盘输入字符名,程序读取键盘输入并将字符名保存在文件名里。代码如下

files = os.listdir("char")
for filename in files:
 filename_ts = filename.split(".")[0]
 patt = "label/{}_*".format(filename_ts)
 saved_num = len(glob.glob(patt))
 if saved_num == 1:
 print("{} done".format(patt))
 continue
 filepath = os.path.join("char", filename)
 im = cv2.imread(filepath)
 cv2.imshow("image", im)
 key = cv2.waitKey(0)
 if key == 27:
 sys.exit()
 if key == 13:
 continue
 char = chr(key)
 filename_ts = filename.split(".")[0]
 outfile = "{}_{}.jpg".format(filename_ts, char)
 outpath = os.path.join("label", outfile)
 cv2.imwrite(outpath, im)

这里一共标注了大概800张字符图片,标注的结果存在名为label的目录下,目录下的文件是这样的(文件名由原文件名+标注名组成)

接下来,我们开始训练数据。

训练数据

首先,我们从label目录中加载已标注的数据

filenames = os.listdir("label")
samples = np.empty((0, 900))
labels = []
for filename in filenames:
 filepath = os.path.join("label", filename)
 label = filename.split(".")[0].split("_")[-1]
 labels.append(label)
 im = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
 sample = im.reshape((1, 900)).astype(np.float32)
 samples = np.append(samples, sample, 0)
samples = samples.astype(np.float32)
unique_labels = list(set(labels))
unique_ids = list(range(len(unique_labels)))
label_id_map = dict(zip(unique_labels, unique_ids))
id_label_map = dict(zip(unique_ids, unique_labels))
label_ids = list(map(lambda x: label_id_map[x], labels))
label_ids = np.array(label_ids).reshape((-1, 1)).astype(np.float32)

接下来,训练我们的模型

model = cv2.ml.KNearest_create()
model.train(samples, cv2.ml.ROW_SAMPLE, label_ids)

训练完,我们用这个模型来识别一下新的验证码。

检测结果

下面是我们要识别的验证码

对于每一个要识别的验证码,我们都需要对图片做降噪、二值化、分割的处理(代码和上面的一样,这里不再重复)。假设处理后的图片存在变量im_res中,分割后的字符的轮廓信息存在变量boxes中,识别验证码的代码如下

for box in boxes:
 roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]
 roistd = cv2.resize(roi, (30, 30))
 sample = roistd.reshape((1, 900)).astype(np.float32)
 ret, results, neighbours, distances = model.findNearest(sample, k = 3)
 label_id = int(results[0,0])
 label = id_label_map[label_id]
 print(label)

运行上面的代码,可以看到程序输出

y
y
4
e

图片中的验证码被成功地识别出来。

我们测试了下识别的准确率,取100张验证码图片(存在test目录下)进行识别,识别的准确率约为82%。看到有人说用神经网络识别验证码,准确率可以达到90%以上,下次有机会可以尝试一下。

完整代码已上传github:pythonml/captacha

原文地址:https://zhuanlan.zhihu.com/p/43092916

如有侵权 立即删除。

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: