Python项目实战篇,常用验证码标注和识别(需求分析和实现思路)
off999 2024-10-23 12:51 26 浏览 0 评论
来源:Python爬虫与数据挖掘
作者:Python进阶者
一、前言
今天给大家分享的实战项目是常用验证码标注&识别,从想法诞生到实现思路,再到编码实战的整体过程,这个过程我前后整理了上万字,计划分章节来发布。言归正传,一起来看看今天的内容吧!今天这篇内容主要讲解这篇文章的创作灵感、需求分析和实现思路。
首先介绍一下验证码基本概念,验证码全称为全自动区分计算机和人类的图灵测试(Completely Automated Public Turing test to tell Computers and Humans Apart,简称CAPTCHA),俗称验证码,是一种区分用户是计算机和人的公共全自动程序。验证码的主要目的是强制人机交互来抵御机器自动化攻击,为了确保服务器系统的稳定和用户信息的安全,大部分网站采用了验证码技术。图片验证码是目前最常用的一种,本文也主要讨论这种验证码的识别。
最初,图片验证码识别的想法最初源于12年的大学阶段,当时的学校教务系统每次抢课系统就崩溃,而且还要特定时间段跟其他同学一起抢指定课程,基本抢不到自己想修的课程,那时候就想绕过系统图片验证码通过代码实现自动抢课,鉴于当时自己编码能力和技术能力有限,机器学习、神经网络相关框架效果较差,最后以各种条件限制实现不了告终~~
XDM,等等,故事还没完,时间回到2021年,做为一名勤于搬砖、善于思考学习的程序猿,在经过几年社会的毒打后,想着以现在自己的项目经验、学习能力和编码功底,以及行业内机器学习、神经网络等AI技术的发展,能不能把多年以来的想法给实现,达到图片验证码高正确率识别预测,训练一个高度可用的CNN模型。在做项目之前经过笔者几天的资料查询过程中,确信高可用的验证码识别模型想法是可以做的,于是开启了CNN神经网络等技术前置知识的漫长学习过程。
几个月过后,项目编码实战出炉,效果嘛,自我感觉还行,基本达到高可用,500张训练数据图,CNN模型单个字符97%以上准确率。
这里先贴项目的工程Git地址,有基础的同学可以去直接拉取项目下来把玩源码:
[Java后台-通用验证码标注系统](https://gitee.com/snowball2dev/DataMarkService)
[Vue管理后台模板-通用验证码标注系统](https://gitee.com/snowball2dev/DataMarkService-Vue)
[Python-图片验证码识别模型案例](https://gitee.com/snowball2dev/VerifyCodeRecognize-Python)
[标注系统线上效果体验地址](http://139.9.191.103:8084/)
好的,XDM,如果到这里还有兴趣往下看的话,那么就请跟随结合笔者的学习、编码实战过程来了解常用的验证码识别方法和过程。
二、需求分析
说到图片验证码识别功能,这个功能初步想想也简单,网上搜一下关键词,相关文章和开源项目非常多。以下是github搜索结果:
乍一看,好像真有免费的午餐,随便下载个CNN-python项目,改几行代码,然后开始疯狂标注数据过程,就能跑出来模型。
笔者自己最初也是这么想的,只求简单粗暴,于是弄了几个项目下来跑了之后,发现代码是可以用,但是效果非常拉跨,单个字符识别正确率很低,70%不到,4-6个字符那正确率就更低了,基本上达不到高正确率,可用性非常一般。对于一个有追求的程序猿,不可能这么就完事了,于是,这就有了这个项目的整活。
在使用这些开源项目的过程中,发现下载的项目实现过程大都分为2种思路,第一种无需图片切割,直接数据标注训练模型;第二种为图片验证码进行字符切割,然后为单个字符进行分类训练。项目执行的具体过程就不演示了,有兴趣的读者开源自行捣鼓,下面就是笔者自己对2种思路适用方式的实践思考总结:
1. 第一种无需图片切割
优点:简单粗暴,通用性强,直接用各种卷积神经网络模型硬怼图片验证码提取特征,适合知道验证码生成的正向代码过程,用代码生成图片验证码数据给模型训练。
缺点:数据量小时模型拟合效果差,需要大量人工标注数据,不太适合不知道验证码生成规则,少量标注数据。
2. 第二种进行字符切割
针对验证码生成规则,分析验证码各种背景干扰、噪声点像素、字体形变和累叠、字符位置随机及个数不定、反色等情况,对图片逆向处理,达到局部字符可切割,降低卷积模型层次,降低数据标注量,实现字符分类。
优点:可针对单一图片验证码做特殊预处理,可实现部分字符切割,针对字符小图进行分类训练,小批量数据标注就可以训练模型达到高拟合效果,达到可用
缺点:通用性不强,训练模型只适用特定图片验证码,复杂验证码可能无法切割XDM,等等,还有一种思路:
笔者自己学习OpenCV时想到的,通过图片预处理,轮廓检测,然后对A-Z,0-9字符通过SIFT算法进行特征提取,最后跟需要匹配的字符进行FLANN匹配,理想很丰满,然后编写相关代码后发现由于验证码的正向生成过程导致字符特征变化太大,并不适合,于是放弃采用该思路,代码见上述代码链接中的python项目image_match.py。
根据以上思路总结,根本没有免费的午餐,好的数据和特征工程同等重要,要实现好的效果,都是要根据具体问题具体分析,所以笔者分析自己的图片验证码识别案例,更适合第二种,另外一点原因大批量标注数据人工成本过高,个人不太喜欢。以下将附带案例详细介绍第二种识别思路的实现过程。
三、实现思路
根据需求初步分析,大概可分为四个步骤:
1. 数据采集/预处理:http批量下载,OpenCV API使用学习,图片预处理
2. 数据标注:GUI标注功能开发,人工标注数据阶段,模型训练后预测数据可进行数据集补充
3. CNN神经网络模型训练:windows环境,cpu/gpu,学习神经网络框架API,微积分、线代、概率论等前置知识,加深对神经网络模型理解,pytroch框架的使用
4. 项目部署:linux环境下,标注系统VUE前端部署、标注系统Java后端部署、Python模型部署
以下是Xmind脑图导出效果:
四、总结
我是Snowball。这篇内容主要讲解了常用验证码标注&识别的背景知识, 介绍了验证码的基本概念,讲述了这个文章的的创作灵感、需求分析和实现思路。
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)