机器学习之NumPy库-创建数组(numpy创建数组arange)
off999 2024-10-24 12:30 28 浏览 0 评论
机器学习的最基础模块就是numpy模块了,而numpy模块中的数组操作又是重中之重,所以我们今天主要介绍数组的创建方法。
一、创建数组
- numpy.empty
numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:
numpy.empty(shape, dtype = float, order = 'C')
//shape 数组形状
//dtype 数据类型,可选
//order 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
//创建空数组
import numpy as np
x = np.empty([2,3], dtype = int)
print (x)
//输出
[[ 3458764513820540928 -9223363249997890790 4207488256838926340]
[ 4640128614720080996 604961579779425155 189479273602761376]]数组元素为随机值,因为它们未初始化。
- numpy.zeros
创建指定大小的数组,数组元素以 0 来填充
注意:默认是 float 类型的
numpy.zeros(shape, dtype = float, order = 'C')
//shape 数组形状
//dtype 数据类型,可选
//order 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
import numpy as np
# 默认为浮点数
x = np.zeros(5)
print(x)
# 设置类型为整数
y = np.zeros((5,), dtype = np.int)
print(y)
# 自定义类型
z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print(z)
#输出
[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (0, 0)]]对比:
empty() 方法和 zeros() 方法不同,不会将数组值设置为零,因此可能会略微加快。另一方面,它要求用户手动设置数组中的所有值,并应谨慎使用。
- numpy.ones
创建指定形状的数组,数组元素以 1 来填充:
numpy.ones(shape, dtype = None, order = 'C')
//shape 数组形状
//dtype 数据类型,可选
//order 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
import numpy as np
# 默认为浮点数
x = np.ones(5)
print(x)
# 自定义类型
x = np.ones([2,3], dtype = int)
print(x)
#输出结果为:
[1. 1. 1. 1. 1.]
[[1 1 1]
[1 1 1]]- numpy.full
返回给定维度和类型的新数组,填充 fill_value
numpy.full(shape, fill_value, dtype=None, order='C')
//shape 返回数组的维度
//fill_value 填充值
//dtype 返回数组的数据类型,默认值 None 指:np.array(fill_value).dtype
//order 在计算机内存中的存储元素的顺序,只支持 'C'(按行)、'F'(按列),默认 'C'
import numpy as np
a = np.full((2, 3), 9)
print(a)
#输出:
[[9 9 9]
[9 9 9]]二、从已有的数组创建数组
- numpy.asarray
numpy.asarray(a, dtype = None, order = None)
//a 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
//dtype 数据类型,可选
//order 可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
#将列表转换为 ndarray:
import numpy as np
x = [1,2,3,4]
a = np.asarray(x)
print (a)
#输出结果为:
[1 2 3 4]
#将元组转换为 ndarray:
import numpy as np
x = (1,2,3,4)
a = np.asarray(x)
print (a)
#输出结果为:
[1 2 3 4]
#将元组列表转换为 ndarray:
import numpy as np
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print (a)
#输出结果为:
[(1, 2, 3) (4, 5)]
#设置了 dtype 参数:
import numpy as np
x = [1,2,3]
a = np.asarray(x, dtype = float)
print (a)
#输出结果为:
[ 1. 2. 3.]
- numpy.frombuffer
numpy.frombuffer 用于实现动态数组。
numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
//buffer 实现了 __buffer__ 方法的对象
//dtype 返回数组的数据类型,可选
//count 读取的数据数量,默认为-1,读取所有数据。
//offset 读取的起始位置,默认为0。
import numpy as np
#buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。
s = b'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print (a)
#输出结果为:
[b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']- numpy.fromiter
numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。
numpy.fromiter(iterable, dtype, count=-1)
//iterable 可迭代对象
//dtype 返回数组的数据类型
//count 读取的数据数量,默认为-1,读取所有数据
import numpy as np
# 使用 range 函数创建列表对象
list=range(5)
it=iter(list)
# 使用迭代器创建 ndarray
x=np.fromiter(it, dtype=float)
print(x)
#输出结果为:
[0. 1. 2. 3. 4.]三、从数值范围创建数组
- numpy.arange
numpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象,函数格式如下:
numpy.arange(start, stop, step, dtype)
//根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个 ndarray。
//start 起始值,默认为0
//stop 终止值(不包含)
//step 步长,默认为1
//dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。
#生成 0 到 5 的数组:
import numpy as np
x = np.arange(5)
print (x)
#输出结果如下:
[0 1 2 3 4]
#设置返回类型位 float:
import numpy as np
# 设置了 dtype
x = np.arange(5, dtype = float)
print (x)
#输出结果如下:
[0. 1. 2. 3. 4.]
#设置了起始值、终止值及步长:
import numpy as np
x = np.arange(10,20,2)
print (x)
#输出结果如下:
[10 12 14 16 18]- numpy.linspace
numpy.linspace 函数用于创建一个一维数组,数组是一个等差数列构成的,格式如下:
np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
//start 序列的起始值
//stop 序列的终止值,如果endpoint为true,该值包含于数列中
//num 要生成的等步长的样本数量,默认为50
//endpoint 该值为 true 时,数列中包含stop值,反之不包含,默认是True。
//retstep 如果为 True 时,生成的数组中会显示间距,反之不显示。
//dtype ndarray 的数据类型
#以下实例用到三个参数,设置起始点为 1 ,终止点为 10,数列个数为 10。
import numpy as np
a = np.linspace(1,10,10)
print(a)
#输出结果为:
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
#设置元素全部是1的等差数列:
import numpy as np
a = np.linspace(1,1,10)
print(a)
#输出结果为:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
#将 endpoint 设为 false,不包含终止值:
import numpy as np
a = np.linspace(10, 20, 5, endpoint = False)
print(a)
#输出结果为:
[10. 12. 14. 16. 18.]
#如果将 endpoint 设为 true,则会包含 20。以下实例设置间距。
import numpy as np
a =np.linspace(1,10,10,retstep= True)
print(a)
b =np.linspace(1,10,10).reshape([10,1])
print(b)
#输出结果为:
(array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]), 1.0)
[[ 1.]
[ 2.]
[ 3.]
[ 4.]
[ 5.]
[ 6.]
[ 7.]
[ 8.]
[ 9.]
[10.]]- numpy.logspace
numpy.logspace 函数用于创建一个于等比数列。格式如下:
np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
//start 序列的起始值为:base ** start
//stop 序列的终止值为:base ** stop。如果endpoint为true,该值包含于数列中
#num 要生成的等步长的样本数量,默认为50
#endpoint 该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
#base 对数 log 的底数。
dtype ndarray 的数据类型
实例
import numpy as np
# 默认底数是 10
a = np.logspace(1.0, 2.0, num = 10)
print (a)
输出结果为:
[ 10. 12.91549665 16.68100537 21.5443469 27.82559402
35.93813664 46.41588834 59.94842503 77.42636827 100. ]
将对数的底数设置为 2 :
实例
import numpy as np
a = np.logspace(0,9,10,base=2)
print (a)
输出如下:
[ 1. 2. 4. 8. 16. 32. 64. 128. 256. 512.]相关推荐
- 2025十佳笔记本排行(2021年十大最佳笔记本)
-
2021年,笔记本电脑用什么CPU最好用?当然是艾灸系列最新12代的CPU最好用,也需要根据他的具体配置搭配什么样的主板和显卡,按成熟度来说,还是选择次心大的笔记本CPU比较好,因为硬件搭配也是202...
- 手机谷歌浏览器(手机谷歌浏览器怎么关闭无痕模式)
-
使用手机chrome方法:1、打开手机上的谷歌浏览器2、点击打开后,找到右上角的三个小点,点开它,会看到“设置”3、点开设置,然后会出现“搜索引擎”4、点开“搜索引擎”然后选择“搜狗”。5、然后一步步...
- 千兆网对路由器有要求吗(千兆路由器对无线有用吗)
-
回答:虽然不是必须,但是建议采用千兆路由器。只有使用千兆路由器,才能达到1000M光纤的最高网速。当使用旧的百兆路由器情况下,千兆带宽只能达到百兆网速。不能充分利用带宽,这样对您的千兆互联网光纤带宽...
- win7重装系统方法(win7系统重装详细步骤)
-
步骤1、打开云骑士装机大师,点击一键装机下的【立即重装】,检测完毕后点击【下一步】;步骤2、选择windows7下的旗舰版32位,点击【下一步】,自行选择或取消推荐的软件,点击【下一步】;步骤3、备份...
- 电脑桌面啥都没有了怎么回事
-
1、如果我们桌面上什么东西都没有,可以先打开任务管理器,然后顶级左上方的文件,随后新建任务,在打开的界面中输入explorer,点击确认之后,等个几秒钟左右就可以看见桌面上的图标了。 2、另一个方法...
- 如何将电脑恢复出厂设置win7
-
1.首先我们打开电脑找到“计算机”点击打开。2.进入页面然后我们点击“Windows7(C:)”打开C盘。3.我们在C盘界面找到Windows7并点击打开。4.进入到Win7文件夹中找到并双击“Sys...
- u盘存在但是读不出来(u盘显示有内容但读不出来怎么办)
-
u盘能识别,不能读取可能是你关闭了u盘自动读取,取消后即可。步骤:1、在电脑桌面右键点击“计算机”,在出现的菜单中选择“管理”选项2、在弹出的计算机管理窗口,依次打开“计算机管理-服务和应用程序-服务...
- win8家庭中文版下载(windows家庭中文版下载)
-
可以按照以下步骤在Win8上下载和安装Word:1.通过微软官网下载购买,或者通过MicrosoftStore应用商店进行购买和下载。2.下载完成后,打开文件夹,双击setup进行安装。3.安...
- 教大家强制退出苹果id账号(教大家强制退出苹果id账号ipad)
-
1.首先将手机强制关机,并在电脑端安装iTunes并打开。2.用数据线将手机与电脑连接起来,长按手机电源键。3.当出现苹果标志时不要松开电源键,接着按Home键。4.直到屏幕黑屏,松开电源键。5.继续...
- 惠普官网驱动下载官网(惠普驱动官方)
-
在惠普官网下载系统驱动方法如下访问HP官网:www.hp.com找到支持与驱动页面(通常在顶部导航栏的支持或下载中)输入你的HP产品的序列号或选择产品类型和型号选择你的操作系统,然后下载相关的驱动。安...
- 电脑公司取名字大全(电脑行业公司取名)
-
动感网络IT狂人行鱼雷IT网PC宝宝网外有鱼超导技术网PC技术网加点分吧,不然想不出太多,呵呵绿苑计算机协会绿色代表生命,有起航的意义,苑是一个范畴,有地域的意思,是给你们一片天地的意思...
- wifi怎么设置网速快(手机测wifi网速怎么测)
-
wifi加速设置方法步骤如下。1设置网速:浏览器中输入终端地址,输入账号和密码。找到连接设备数目并进行更改,找到信道宽度,选择更快的网速。2提高WiFi网速:进入设置中心,点击WLAN选项。点击高级设...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
