百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用Python进行爬虫的初学者指南(python爬虫怎么用)

off999 2024-10-26 12:10 18 浏览 0 评论

前言

爬虫是一种从网站上抓取大量数据的自动化方法。即使是复制和粘贴你喜欢的网站上的引用或行,也是一种web抓取的形式。大多数网站不允许你保存他们网站上的数据供你使用。因此,唯一的选择是手动复制数据,这将消耗大量时间,甚至可能需要几天才能完成。

网站上的数据大多是非结构化的。Web抓取有助于将这些非结构化数据,并将其以自定义和结构化的形式存储到本地或数据库中。如果您是为了学习的目的而抓取web页面,那么您不太可能会遇到任何问题,在不违反服务条款的情况下,自己进行一些web抓取来增强您的技能是一个很好的实践。


爬虫步骤

为什么使用Python进行Web抓取?

Python速度快得令人难以置信,而且更容易进行web抓取。由于太容易编码,您可以使用简单的小代码来执行大型任务。

如何进行Web抓取?

我们需要运行web抓取的代码,以便将请求发送到我们想要抓取的网站的URL。服务器发送数据并允许我们读取HTML或XML页面作为响应。代码解析HTML或XML页面,查找数据并提取它们。

下面是使用Python使用Web抓取提取数据的步骤

  1. 寻找您想要抓取的URL
  2. 分析网站
  3. 找到要提取的数据
  4. 编写代码
  5. 运行代码并从网站中提取数据
  6. 将所需格式的数据存储在计算机中


用于Web抓取的库

  • Requests
  • Beautiful Soup
  • Pandas
  • Tqdm


Requests是一个允许使用Python发送HTTP请求的模块。HTTP请求用于返回一个包含所有响应数据(如编码、状态、内容等)的响应对象

BeautifulSoup是一个用于从HTML和XML文件中提取数据的Python库。这适用于您喜欢的解析器,以便提供导航、搜索和修改解析树的惯用方法。它是专门为快速和高可靠的数据提取而设计的。

pandas是一个开源库,它允许我们在Python web开发中执行数据操作。它构建在Numpy包上,其关键数据结构称为DataFrame。DataFrames允许我们在观察数据行和变量列中存储和操作表格数据。

Tqdm是另一个python库,它可以迅速地使您的循环显示一个智能进度计—您所要做的就是用Tqdm(iterable)包装任何可迭代的。


演示:抓取一个网站


Step 1. 寻找您想要抓取的URL


为了演示,我们将抓取网页来提取手机的详细信息。我使用了一个示例(www.example.com)来展示这个过程。


Stpe 2. 分析网站


数据通常嵌套在标记中。分析和检查我们想要获取的数据被标记在其下的页面是嵌套的。要查看页面,只需右键单击元素,然后单击“inspect”。一个小的检查元件盒将被打开。您可以看到站点背后的原始代码。现在你可以找到你想要刮的细节标签了。

您可以在控制台的左上角找到一个箭头符号。如果单击箭头,然后单击产品区域,则特定产品区域的代码将在console选项卡中突出显示。

我们应该做的第一件事是回顾和理解HTML的结构,因为从网站上获取数据是非常重要的。网站页面上会有很多代码,我们需要包含我们数据的代码。学习HTML的基础知识将有助于熟悉HTML标记。



Step 3.找到要提取的数据

我们将提取手机数据,如产品名称、实际价格、折扣价格等。您可以提取任何类型的数据。为此,我们必须找到包含我们的数据的标记。

通过检查元素的区域来打开控制台。点击左上角的箭头,然后点击产品。您现在将能够看到我们点击的产品的特定代码。


Step 4. 编写代码

现在我们必须找出数据和链接的位置。让我们开始代码编写。

创建一个名为scrap.py的文件,并在您选择的任何编辑器中打开它。我们将使用pip安装上面提到的四个Python库。

第一个和主要的过程是访问站点数据。我们已经设置了该网站的URL,并访问了该网站。

url = 'https://www.example.com/products/mobiles-mobile-phones?sort=plrty'headers = {    'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64)'    'AppleWebKit/537.36 (KHTML, like Gecko)'    'Chrome/64.0.3282.167 Safari/537.36'    }result = requests.get(url, headers=headers,verify=True)Print(result)

Output: <Response [200]>


如果你看到上面的结果,那么你已经成功访问了这个网站。


Step 5. 运行代码并从网站中提取数据

现在,我们将使用Beautifulsoup解析HTML。

soup = BeautifulSoup(result.content, 'html.parser')

如果我们打印soup,然后我们将能够看到整个网站页面的HTML内容。我们现在要做的就是过滤包含数据的部分。因此,我们将从soup中提取section标记。

section=soup.find("section", class_='js-section').find_all("div",{'class':'product-desc-rating})Print(section)


结果如下:

现在,我们可以在div的“product-desc-rating”类中提取移动电话的详细信息。我已经为移动电话的每个列细节创建了一个列表,并使用for循环将其附加到该列表中。

Products = []url = []Actual_Price = []Discounted_Price = []Discount = []


产品名称出现在HTML中的p标记(段落标记)之下,而product_url则出现在锚标记之下。

HTML锚标记定义了一个超链接,将一个页面链接到另一个页面。它可以创建到另一个web页面以及文件、位置或任何URL的超链接。“href”属性是HTML标记最重要的属性。以及指向目标页面或URL的链接。

然后我们将提取实际价格和折扣价格,它们都出现在span标签中。标签用于对内联元素进行分组。并且标签本身不提供任何视觉变化。最后,我们将从div标签中提取报价百分比。div标记是块级标记。它是一个通用的容器标签。它用于HTML的各种标记组,以便可以创建节并将样式应用于它们。

for t in tqdm(section):    product_name = t.p.text    Products.append(product_name)    product_url = t.a['href']    url.append(product_url)    original_price = t.span.getText()    Actual_Price.append(original_price)    discounted_price = t.find('span', class_ = 'lfloat product-price').getText()    Discounted_Price.append(discounted_price)    try:        product_discount = t.find('div', class_ = 'product-discount')        Discount.append(product_discount.text)    except Exception as e:        product_discount = None          Discount.append(product_discount)


Step 6. 以所需的格式存储数据

我们已经提取了数据。我们现在要做的就是将数据存储到文件或数据库中。您可以按照所需的格式存储数据。这取决于你的要求。在这里,我们将以CSV(逗号分隔值)格式存储提取的数据。

 = pd.DataFrame({'Product Name':Products,'Actual_Price':Actual_Price,'Discounted_Price':Discounted_Price,'Offer_Percentage':Discount,'Product_url':url}) df.to_csv(' products.csv', index=False, encoding='utf-8')


参考:

https://www.agiratech.com/web-scraping-using-python

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: