百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

从零开始搭建Python网络爬虫系统:详解数据抓取、处理与存储

off999 2024-10-26 12:11 29 浏览 0 评论

网络爬虫是获取数据的关键技术,它在信息搜集和数据分析等多个领域发挥着重要作用。在这篇文章中,我们将通过众多详尽的代码实例,向您展示如何利用Python语言打造一套功能完备的网络爬虫解决方案,包括数据的采集、净化、保存和分析等环节。我们期望读者通过本文能够学会自主构建网络爬虫系统的关键技巧。

一、网络爬虫基础概念与环境准备

网络爬虫是一种自动化程序,通过模拟浏览器访问网页并提取有用信息。我们将使用requests和BeautifulSoup库来实现爬虫功能。

1. 安装必要的Python库

首先,我们需要安装一些常用的库,运行以下命令即可:

bash

复制代码

pip install requests beautifulsoup4 pandas

二、构建基础网络爬虫

我们将从一个简单的爬虫开始,抓取网页内容并解析其中的数据。

1. 使用requests获取网页内容

requests库可以轻松发送HTTP请求并获取响应内容。

python

复制代码

import requests

# 设置目标URL

url = 'https://example.com'

# 发送GET请求获取网页内容

response = requests.get(url)

# 检查响应状态

if response.status_code == 200:

print("成功获取网页内容!")

print(response.text)

else:

print("请求失败,状态码:", response.status_code)

2. 使用BeautifulSoup解析网页

BeautifulSoup库可以方便地解析HTML内容,提取网页中的信息。

python

复制代码

from bs4 import BeautifulSoup

www.yunduaner.com/ulR8x7/

# 使用BeautifulSoup解析HTML内容

soup = BeautifulSoup(response.text, 'html.parser')

# 提取网页标题

title = soup.find('title').get_text()

print("网页标题:", title)

# 提取所有链接

links = soup.find_all('a')

for link in links:

print(link.get('href'))

三、批量抓取与数据处理

实际应用中,通常需要从多个网页获取数据并进行处理。

1. 批量抓取网页数据

我们可以遍历多个URL,批量抓取数据并存储在列表中。

python

复制代码

data = []

# 要抓取的多个URL

urls = ['https://example.com/page1', 'https://example.com/page2', 'https://example.com/page3']

for url in urls:

www.yuanyets.com/S3mJN8/

response = requests.get(url)

if response.status_code == 200:

soup = BeautifulSoup(response.text, 'html.parser')

title = soup.find('title').get_text()

data.append(title)

print("抓取的数据:", data)

2. 数据清洗与处理

使用pandas库对抓取的数据进行清洗和处理。

python

复制代码

import pandas as pd

# 转换为DataFrame

df = pd.DataFrame(data, columns=['Title'])

# 去除重复数据

df.drop_duplicates(inplace=True)

# 打印清洗后的数据

print("清洗后的数据:")

print(df)

四、数据存储与读取

为了便于数据管理,我们将抓取的数据存储到数据库中。

1. 使用SQLite存储数据

SQLite是轻量级的数据库,适合小规模数据的存储。

python

复制代码

import sqlite3

# 连接SQLite数据库

conn = sqlite3.connect('data.db')

c = conn.cursor()

# 创建表格

c.execute('''

CREATE TABLE IF NOT EXISTS webpage (

id INTEGER PRIMARY KEY,

title TEXT

''')

# 插入数据

for index, row in df.iterrows():

c.execute('INSERT INTO webpage (title) VALUES (?)', (row['Title'],))

# 提交事务

conn.commit()

# 关闭连接

conn.close()

2. 从数据库中读取数据

python

复制代码

# 连接数据库

conn = sqlite3.connect('data.db')

c = conn.cursor()

# 查询数据

c.execute('SELECT * FROM webpage')

rows = c.fetchall()

# 打印查询结果

for row in rows:

print(row)

# 关闭连接

conn.close()

五、数据分析与可视化

抓取到的数据可以进行分析和可视化,以便从中挖掘有用的信息。

1. 数据统计分析

使用pandas库进行数据统计分析。

python

复制代码

# 连接数据库

conn = sqlite3.connect('data.db')

# 使用pandas读取数据

df = pd.read_sql_query('SELECT * FROM webpage', conn)

# 数据描述统计

print("数据描述统计:")

print(df.describe())

# 关闭连接

conn.close()

2. 数据可视化

使用matplotlib库进行数据可视化。

python

复制代码

import matplotlib.pyplot as plt

# 添加列表示标题长度

df['title_length'] = df['title'].apply(len)

# 绘制标题长度分布直方图

plt.figure(figsize=(10, 6))

plt.hist(df['title_length'], bins=20, edgecolor='black')

plt.xlabel('标题长度')

plt.ylabel('频数')

plt.title('标题长度分布')

plt.show()

六、提高爬虫效率与应对反爬虫措施

为了提高爬虫效率和应对反爬虫措施,我们可以采取一些技术手段。

1. 使用多线程提高效率

使用threading库实现多线程爬虫。

python

复制代码

import threading

def fetch_data(url):

www.xsjdyp.com/JZGO8k/

response = requests.get(url)

if response.status_code == 200:

soup = BeautifulSoup(response.text, 'html.parser')

title = soup.find('title').get_text()

print(f"从 {url} 获取的数据:{title}")

# 要抓取的URL列表

urls = ['https://example.com/page1', 'https://example.com/page2', 'https://example.com/page3']

# 创建线程

threads = []

for url in urls:

thread = threading.Thread(target=fetch_data, args=(url,))

threads.append(thread)

thread.start()

# 等待所有线程完成

for thread in threads:

thread.join()

2. 应对反爬虫机制

应对常见的反爬虫措施如IP封禁和验证码。

python

复制代码

import time

# 设置请求头,模拟浏览器访问

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'

}

# 使用代理进行请求

proxies = {

'http': 'http://your_proxy:port',

'https': 'https://your_proxy:port'

}

# 发送请求

response = requests.get(url, headers=headers, proxies=proxies)

# 设置延迟,避免触发反爬虫

time.sleep(2)

七、总结与展望

本文通过详细的代码示例,展示了如何使用Python从数据抓取、清洗、存储到分析,构建一个完整的网络爬虫系统。希望读者能够掌握从零开始搭建网络爬虫的核心技术,并通过不断学习,提升数据采集和分析能力,迎接未来的挑战。无限超人,8年数据领域深耕,专注于精准数据采集与智能RPA,释放数据潜能,提升业务效率。

相关推荐

Alist 玩家请进:一键部署全新分支 Openlist,看看香不香!

Openlist(其前身是鼎鼎大名的Alist)是一款功能强大的开源文件列表程序。它能像“万能钥匙”一样,解锁并聚合你散落在各处的云盘资源——无论是阿里云盘、百度网盘、GoogleDrive还是...

白嫖SSL证书还自动续签?这个开源工具让我告别手动部署

你还在手动部署SSL证书?你是不是也遇到过这些问题:每3个月续一次Let'sEncrypt证书,忘了就翻车;手动配置Nginx,重启服务,搞一次SSL得花一下午;付费证书太贵,...

Docker Compose:让多容器应用一键起飞

CDockerCompose:让多容器应用一键起飞"曾经我也是一个手动启动容器的少年,直到我的膝盖中了一箭。"——某位忘记--link参数的运维工程师引言:容器化的烦恼与...

申请免费的SSL证书,到期一键续签

大家好,我是小悟。最近帮朋友配置网站HTTPS时发现,还有人对宝塔面板的SSL证书功能还不太熟悉。其实宝塔早就内置了免费的Let'sEncrypt证书申请和一键续签功能,操作简单到连新手都能...

飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx

前面分享了两期TVGate:Q大的转发代理工具TVGate升级了,操作更便捷,增加了新的功能跨平台内网转发神器TVGate部署与使用初体验现在项目已经开源,并支持Docker部署,本文介绍如何通...

Docker Compose 编排实战:一键部署多容器应用!

当项目变得越来越复杂,一个服务已经无法满足需求时,你可能需要同时部署数据库、后端服务、前端网页、缓存组件……这时,如果还一个一个手动dockerrun,简直是灾难这就是DockerCompo...

深度测评:Vue、React 一键部署的神器 PinMe

不知道大家有没有这种崩溃瞬间:领导突然要看项目Demo,客户临时要体验新功能,自己写的小案例想发朋友圈;找运维?排期?还要走工单;自己买服务器?域名、SSL、Nginx、防火墙;本地起服务?断电、关...

超简单!一键启动多容器,解锁 Docker Compose 极速编排秘籍

想要用最简单的方式在本地复刻一套完整的微服务环境?只需一个docker-compose.yml文件,你就能一键拉起N个容器,自动组网、挂载存储、环境隔离,全程无痛!下面这份终极指南,教你如何用...

日志文件转运工具Filebeat笔记_日志转发工具

一、概述与简介Filebeat是一个日志文件转运工具,在服务器上以轻量级代理的形式安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并将来自...

K8s 日志高效查看神器,提升运维效率10倍!

通常情况下,在部署了K8S服务之后,为了更好地监控服务的运行情况,都会接入对应的日志系统来进行检测和分析,比如常见的Filebeat+ElasticSearch+Kibana这一套组合...

如何给网站添加 https_如何给网站添加证书

一、简介相信大家都知道https是更加安全的,特别是一些网站,有https的网站更能够让用户信任访问接下来以我的个人网站五岁小孩为例子,带大家一起从0到1配置网站https本次配置的...

10个Linux文件内容查看命令的实用示例

Linux文件内容查看命令30个实用示例详细介绍了10个Linux文件内容查看命令的30个实用示例,涵盖了从基本文本查看、分页浏览到二进制文件分析的各个方面。掌握这些命令帮助您:高效查看各种文本文件内...

第13章 工程化实践_第13章 工程化实践课

13.1ESLint+Prettier代码规范统一代码风格配置//.eslintrc.jsmodule.exports={root:true,env:{node...

龙建股份:工程项目中标_龙建股份有限公司招聘网

404NotFoundnginx/1.6.1【公告简述】2016年9月8日公告,公司于2016年9月6日收到苏丹共和国(简称“北苏丹”)喀土穆州基础设施与运输部公路、桥梁和排水公司出具的中标通知书...

福田汽车:获得政府补助_福田 补贴

404NotFoundnginx/1.6.1【公告简述】2016年9月1日公告,自2016年8月17日至今,公司共收到产业发展补助、支持资金等与收益相关的政府补助4笔,共计5429.08万元(不含...

取消回复欢迎 发表评论: