「Python实现数据可视化」创建3D柱状图
off999 2024-10-27 11:46 31 浏览 0 评论
虽然matplotlib主要专注于绘图,并且主要是二维的图形,但是它也有一些不同的扩展,能让我们在地理图上绘图,让我们把Excel和3D图表结合起来。在matplotlib的世界里,这些扩展叫做工具包(toolkits)。工具包是一些关注在某个话题(如3D绘图)的特定函数的集合。
比较流行的工具包有Basemap、GTK 工具、Excel工具、Natgrid、AxesGrid和mplot3d。
本节将探索关于mplot3d的更多功能。mpl_toolkits.mplot3工具包提供了一些基本的3D绘图功能,其支持的图表类型包括散点图(scatter)、曲面图(surf)、线图(line)和网格图(mesh)。虽然mplot3d不是一个最好的3D图形绘制库,但是它是伴随着matplotlib产生的,因此我们对其接口已经很熟悉了。
准备工作
基本来讲,我们仍然需要创建一个图表并把想要的坐标轴添加到上面。但不同的是我们为图表指定的是3D视图,并且添加的坐标轴是Axes3D。
现在,我们可以使用几乎相同的函数来绘图了。当然,函数的参数是不同的,需要为3个坐标轴提供数据。
例如,我们要为函数mpl_toolkits.mplot3d.Axes3D.plot指定xs、ys、zs和zdir参数。其他的参数则直接传给matplotlib.axes.Axes.plot。下面来解释一下这些特定的参数。
1.xs和ys:x轴和y轴坐标。
2.zs:这是z轴的坐标值,可以是所有点对应一个值,或者是每个点对应一个值。
3.zdir:决定哪个坐标轴作为z轴的维度(通常是zs,但是也可以是xs或者ys)。
提示:模块mpl_toolkits.mplot3d.art3d包含了3D artist代码和将2D artists转化为3D版本的函数。在该模块中有一个rotate_axes方法,该方法可以被添加到Axes3D中来对坐标重新排序,这样坐标轴就与zdir一起旋转了。zdir默认值为z。在坐标轴前加一个'``-``'会进行反转转换,这样一来,zdir的值就可以是x、-x、y、-y、z或者-z。
操作步骤
以下代码演示了我们所解释的概念。
import random
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.mplot3d import Axes3D
mpl.rcParams['font.size'] = 10
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for z in [2011, 2012, 2013, 2014]:
xs = xrange(1,13)
ys = 1000 * np.random.rand(12)
color =plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)
ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))
ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('Sales Net [usd]')
plt.show()上述代码生成如图5-1所示的图表。
工作原理
我们需要像在2D世界中那样做相同的准备工作。不同的是,在这里需要指定后端(backend)的种类。然后生成了一些随机数据,例如4年的销售额(2011-2014)。
我们需要为3D坐标轴指定相同的Z值。
从颜色映射集合中随机选择一种颜色,然后把它和每一个Z-order集合的xs、ys对关联起来。最后,用xs、ys对渲染出柱状条序列。
补充说明
其他的一些matplotlib的2D绘图函数在这里也是可以用的,例如scatter()和plot()有着相似的接口,但有额外的点标记大小参数。我们对contour、contourf和bar也非常熟悉。
仅在3D中出现的新图表类型有线框图(wireframe)、曲面图(surface)和三翼面图(tri-surface)。
在下面的示例代码中,我们绘制了著名的Pringle函数的三翼面图,数学专业上的叫法是双曲面抛物线(hyperbolic paraboloid)。
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
n_angles = 36
n_radii = 8
# An array of radii
# Does not include radius r=0, this is to eliminate duplicate points
radii = np.linspace(0.125, 1.0, n_radii)
# An array of angles
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords
# (0, 0) is added here. There are no duplicate points in the (x, y)
plane
x = np.append(0, (radii * np.cos(angles)).flatten())
y = np.append(0, (radii * np.sin(angles)).flatten())
# Pringle surface
z = np.sin(-x * y)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
plt.show()上面的代码生成如图5-2所示的图形。
本文摘自《Python数据可视化编程实战》
内容简介:本书是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数据可视化效果。
全书共8章,分别介绍了准备工作环境、了解数据、绘制并定制化图表、学习更多图表和定制化、创建3D可视化图表、用图像和地图绘制图表、使用正确的图表理解数据以及更多的matplotlib知识。
本书适合那些对Python编程有一定基础的开发人员阅读,可以帮助读者从头开始了解数据、数据格式、数据可视化,并学会使用Python可视化数据。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
