百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

【Python可视化系列】一文教会你绘制美观的直方图(理论+源码)

off999 2024-10-27 11:47 21 浏览 0 评论

一、引言

前面我详细介绍了如何绘制漂亮的折线图和柱状图:

【Python可视化系列】一文彻底教会你绘制美观的折线图(理论+源码)

【Python可视化系列】一文教会你绘制美观的柱状图(理论+源码)

对于一个连续性的变量,进行分布可视化最基本的图形是直方图(频度图)。每一个直方图进行可视化的时候都是分成两步的:(i) 把数据进行分组,首先把连续性的按照一定的范围进行分组,然后再统计这个范围的人数。(ii) 对上面分组的数据可视化,主要是通过类似条形图的方式来展示出来。

我将持续更新可视化的一些方法,关注我,不错过!本文将详细解读绘制直方图的要点!

二、实现过程

2.1 plt.hist()函数参数详解

函数功能:判定数据(或特征)的分布情况
调用方法:plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False)
参数说明:
x:指定要绘制直方图的数据;
bins:指定直方图条形的个数;
range:指定直方图数据的上下界,默认包含绘图数据的最大值和最小值;
density:是否将直方图的频数转换成频率;
weights:该参数可为每一个数据点设置权重;
cumulative:是否需要计算累计频数或频率;
bottom:可以为直方图的每个条形添加基准线,默认为0;
histtype:指定直方图的类型,默认为bar,除此还有’barstacked’, ‘step’, ‘stepfilled’;
align:设置条形边界值的对其方式,默认为mid,除此还有’left’和’right’;
orientation:设置直方图的摆放方向,默认为垂直方向;
rwidth:设置直方图条形宽度的百分比;
log:是否需要对绘图数据进行log变换;
color:设置直方图的填充色;
label:设置直方图的标签,可通过legend展示其图例;
stacked:当有多个数据时,是否需要将直方图呈堆叠摆放,默认水平摆放;

我们可以使用直方图来展现数据的分布,同过图形的长相,可以快速的判断数据是否近似服从正态分布。之所以我们很关心数据的分布,是因为在统计学中,很多假设条件都会包括正态分布,故使用直方图来定性的判定数据的分布情况,尤其显得重要。

2.2 基本直方图

# 读取数据集
heart = pd.read_csv(os.path.join(base_dir, 'data', 'UCI Heart Disease Dataset.csv'))
# 检查年龄是否有缺失
any(heart.age.isnull())
# 不妨删除含有缺失年龄的观察
heart.dropna(subset=['age'], inplace=True)


# 设置图形的显示风格
plt.style.use('ggplot')
# 字体设置
config = {
    "font.family": 'Times New Roman, SimSun', # 衬线字体
    "font.size": 12, # 相当于小四大小
    "mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大
    'axes.unicode_minus': False # 处理负号,即-号
}
plt.rcParams.update(config)
# 绘图:患者年龄的频数直方图
plt.hist(heart.age, # 绘图数据
        bins = 20, # 指定直方图的条形数为20个
        color = 'steelblue', # 指定填充色
        edgecolor = 'k', # 指定直方图的边界色
        label = '直方图' )# 为直方图呈现标签
plt.title('患者年龄的频数直方图')
plt.xlabel('年龄')
plt.ylabel('频数')
# 显示图例
plt.legend()
# 显示图形
plt.show()

将数据中年龄切成20份,并计算每份患者的人数,得到如下直方图:

2.3 累计频率直方图

# 绘图:年龄的累计频率直方图
plt.hist(heart.age, # 绘图数据
        bins = np.arange(heart.age.min(),heart.age.max(),5), # 指定直方图的组距
        density = True, # 设置为频率直方图
        cumulative = True, # 积累直方图
        color = 'steelblue', # 指定填充色
        edgecolor = 'k', # 指定直方图的边界色
        label = '直方图' )# 为直方图呈现标签


# 设置坐标轴标签和标题
plt.title('患者年龄的频率累计直方图')
plt.xlabel('年龄')
plt.ylabel('累计频率')
# 显示图例
plt.legend(loc = 'best')
# 显示图形
plt.show()

通过累计频率直方图就可以快速的发现到什么年龄段的人数占了多少比重

2.4 频率直方图和密度分布曲线图(密度图)

plt.hist(heart.age, # 绘图数据
        bins = np.arange(heart.age.min(),heart.age.max(),5), # 指定直方图的组距
        density = True, # 设置为频率直方图
        color = 'steelblue', # 指定填充色
        edgecolor = 'k') # 指定直方图的边界色


# 设置坐标轴标签和标题
plt.title('患者年龄频率直方图')
plt.xlabel('年龄')
plt.ylabel('频率')


# 生成正态曲线的数据
x1 = np.linspace(heart.age.min(), heart.age.max(), 1000)
normal = norm.pdf(x1, heart.age.mean(), heart.age.std())
# 绘制正态分布曲线
line1, = plt.plot(x1,normal,'r-', linewidth = 2)


# 生成核密度曲线的数据
kde = mlab.GaussianKDE(heart.age)
x2 = np.linspace(heart.age.min(), heart.age.max(), 1000)
# 绘制
line2, = plt.plot(x2,kde(x2),'g-', linewidth = 2)
# 显示图例
plt.legend([line1, line2],['正态分布曲线','核密度曲线'],loc='best')
# 显示图形
plt.show()

为了测试数据是否近似服从正态分布,要在直方图的基础上再绘制两条线,一条表示理论的正态分布曲线,另一条为核密度曲线,目的就是比较两条曲线的吻合度,越吻合就说明数据越近似于正态分布。

补充:

密度图是与直方图密切相关的概念,它用一条连续的曲线表示变量的分布,可以理解为直方图的”平滑版本“。统计学经典理论假设样本数据来源于总体,而总体数据会服从某个分布(如正态分布,二项式分布等)。密度图采用”核密度统计量“来估计代表总体的随机变量的概率密度函数。直方图(频度图)观察数据的趋势,密度图观察数据的分布。

2.5 堆叠直方图

# 提取不同性别的年龄数据
age_female = heart.age[heart.sex == 0]
age_male = heart.age[heart.sex == 1]
# 设置直方图的组距
bins = np.arange(heart.age.min(), heart.age.max(), 2)
# 男性患者年龄直方图
plt.hist(age_male, bins = bins, label = '男性', color = 'steelblue', alpha = 0.7)
# 女性患者年龄直方图
plt.hist(age_female, bins = bins, label = '女性', alpha = 0.6)
# 设置坐标轴标签和标题
plt.title('患者年龄频数直方图')
plt.xlabel('年龄')
plt.ylabel('人数')
# 显示图例
plt.legend()
# 显示图形
plt.show()

通过两个hist将不同性别的直方图绘制到一张图内,结果如下:

好了,本篇内容就总结分享到这里,需要源码的小伙伴可以关注联系我!

原文链接:

【Python可视化系列】一文教会你绘制美观的直方图(理论+源码)

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

相关推荐

Python四种常用的高阶函数,你会用了吗

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...

Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

数据分析-一元线性回归分析Python

前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...

python基础函数(python函数总结)

Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...

python进阶100集(9)int数据类型深入分析

一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...

Python学不会来打我(73)python常用的高阶函数汇总

python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...

python中有哪些内置函数可用于编写数值表达式?

在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

【Python大语言模型系列】使用dify云版本开发一个智能客服机器人

这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...

Python3.11版本使用thriftpy2的问题

Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...

uwsgi的python2+3多版本共存(python多版本兼容)

一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...

解释一下Python脚本中版本号声明的作用

在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...

除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理

在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...

今年回家没票了?不,我有高科技抢票

零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...

生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了

作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...

取消回复欢迎 发表评论: