Python利用imshow制作自定义渐变填充柱状图/colorbar
off999 2024-10-27 11:48 25 浏览 0 评论
1. 目的
在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic’ 可以很好的做出渐变效果。
2. 代码
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020
@author: fya
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围
a = np.array([[1, 1],
[2, 2],
[3, 3],
[4, 4],
[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
print(a.shape)
clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果
clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)
plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层
ax.yaxis.tick_right #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要
plt.show
fig.savefig('colorbar.tif',dpi=600,format='tif')
print('Done!')
#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)
#width = 0.4
#for x, y in zip(x, y):
#ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')
#plt.show
代码2,渐变色分100段
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020
@author: fanyiang
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
import pandas as pd
import os
fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1],
#[2, 2],
#[3, 3],
#[4, 4],
#[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
avalue=locals
dfvalue=locals
for i in range(1,101):
avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe
df=dfvalue['df'+str(i)]
df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去
df3=pd.read_csv('temp.csv',header=None)#读取csv
df3.columns=['序号','x','y']#column命名,第一列废弃
df3=df3.drop('序号',axis=1)#删除第一列
a=np.array(df3) #转array
print(df3.head)
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))
print(a)
clist=['white','blue'] #线性变化颜色由上面array值 小到大
clist2=['red','white']
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)
plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层
ax.yaxis.tick_right #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要
plt.show
fig.savefig('colorbar.tif',dpi=600,format='tif')
os.remove("temp.csv") #删除临时的csv文件
print('Done!')
#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)
#width = 0.4
#for x, y in zip(x, y):
#ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')
#plt.show
代码3,更改方法2中要暂时存到dataframe的问题
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 11 10:40:53 2020
@author: fanyiang
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
import pandas as pd
import os
fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1],
#[2, 2],
#[3, 3],
#[4, 4],
#[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
avalue=locals
a=[[1,1]]
for i in range(2,1001):
avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组
print(a)
clist=['white','blue'] #线性变化颜色由上面array值 小到大
clist2=['red','white']
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)
plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层
ax.yaxis.tick_right #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要
plt.show
fig.savefig('colorbar.tif',dpi=600,format='tif')
#os.remove("temp.csv") #删除临时的csv
print('Done!')
注:该方法主要改变在于
a=[[1,1]]
for i in range(2,1001):
avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组
3. 代码
效果1
效果2&3
相关推荐
- Python四种常用的高阶函数,你会用了吗
-
每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...
- Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)
-
一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...
- 数据分析-一元线性回归分析Python
-
前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...
- python基础函数(python函数总结)
-
Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...
- python进阶100集(9)int数据类型深入分析
-
一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...
- Python学不会来打我(73)python常用的高阶函数汇总
-
python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...
- python中有哪些内置函数可用于编写数值表达式?
-
在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...
- 如何在Python中获取数字的绝对值?
-
Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...
- 【Python大语言模型系列】使用dify云版本开发一个智能客服机器人
-
这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...
- Python3.11版本使用thriftpy2的问题
-
Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...
- uwsgi的python2+3多版本共存(python多版本兼容)
-
一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...
- 解释一下Python脚本中版本号声明的作用
-
在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...
- 除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理
-
在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...
- 今年回家没票了?不,我有高科技抢票
-
零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...
- 生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了
-
作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)