百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python利用imshow制作自定义渐变填充柱状图/colorbar

off999 2024-10-27 11:48 34 浏览 0 评论

1. 目的

在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic’ 可以很好的做出渐变效果。

2. 代码

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020
@author: fya"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mpl
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围
a = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅print(a.shape)
clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')print('Done!')
#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)
#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')#plt.show

代码2,渐变色分100段

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020
@author: fanyiang"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals dfvalue=locals for i in range(1,101): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe df=dfvalue['df'+str(i)] df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去df3=pd.read_csv('temp.csv',header=None)#读取csvdf3.columns=['序号','x','y']#column命名,第一列废弃df3=df3.drop('序号',axis=1)#删除第一列a=np.array(df3) #转arrayprint(df3.head)
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))
print(a)
clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')os.remove("temp.csv") #删除临时的csv文件print('Done!')
#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)
#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')#plt.show

代码3,更改方法2中要暂时存到dataframe的问题

# -*- coding: utf-8 -*-"""Created on Fri Dec 11 10:40:53 2020
@author: fanyiang"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组print(a)clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')#os.remove("temp.csv") #删除临时的csvprint('Done!')

注:该方法主要改变在于

a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组

3. 代码

效果1

效果2&3

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: