百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python利用imshow制作自定义渐变填充柱状图/colorbar

off999 2024-10-27 11:48 31 浏览 0 评论

1. 目的

在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic’ 可以很好的做出渐变效果。

2. 代码

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020
@author: fya"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mpl
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围
a = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅print(a.shape)
clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')print('Done!')
#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)
#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')#plt.show

代码2,渐变色分100段

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020
@author: fanyiang"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals dfvalue=locals for i in range(1,101): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe df=dfvalue['df'+str(i)] df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去df3=pd.read_csv('temp.csv',header=None)#读取csvdf3.columns=['序号','x','y']#column命名,第一列废弃df3=df3.drop('序号',axis=1)#删除第一列a=np.array(df3) #转arrayprint(df3.head)
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))
print(a)
clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')os.remove("temp.csv") #删除临时的csv文件print('Done!')
#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)
#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')#plt.show

代码3,更改方法2中要暂时存到dataframe的问题

# -*- coding: utf-8 -*-"""Created on Fri Dec 11 10:40:53 2020
@author: fanyiang"""
import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os
fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组print(a)clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca #读取当前图层ax.yaxis.tick_right #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.showfig.savefig('colorbar.tif',dpi=600,format='tif')#os.remove("temp.csv") #删除临时的csvprint('Done!')

注:该方法主要改变在于

a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组

3. 代码

效果1

效果2&3

相关推荐

pip的使用及配置_pip怎么配置

要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...

Anaconda下安装pytorch_anaconda下安装tensorflow

之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...

Centos 7 64位安装 python3的教程

wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...

如何安装 pip 管理工具_pip安装详细步骤

如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...

Python入门——从开发环境搭建到hello world

一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...

生产环境中使用的十大 Python 设计模式

在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...

如何创建和管理Python虚拟环境_python怎么创建虚拟环境

在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...

初学者入门Python的第一步——环境搭建

Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...

全网最简我的世界Minecraft搭建Python编程环境

这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...

Python开发中的虚拟环境管理_python3虚拟环境

Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...

Python内置zipfile模块:操作 ZIP 归档文件详解

一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....

Python内置模块pydoc :文档生成器和在线帮助系统详解

一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...

Python sys模块使用教程_python system模块

1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...

Python Logging 模块完全解读_python logging详解

私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...

软件测试|Python logging模块怎么使用,你会了吗?

Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...

取消回复欢迎 发表评论: