Python中常用的5大排序算法及其实现代码
off999 2024-10-27 11:50 21 浏览 0 评论
排序是每个 IT 工程师和开发人员必备的知识技能。不仅要通过编程面试,而且要了解算法本身。不同的排序算法完美地展示了算法设计如何对程序的复杂性、速度和效率产生如此大的影响。
让我们来看看排名前5,也是最常见,面试中经常被问到的排序算法,看看如何用Python实现它们!
1.冒泡排序
冒泡排序是 CS 入门课程中最常讲授的一种,因为它清楚地说明了排序的工作原理,同时又简单又易于理解。冒泡排序将逐步遍历列表并比较相邻的元素对。如果元素的顺序错误,则会交换这些元素。重复对列表中未排序部分的遍历,直到对列表进行排序。因为冒泡排序重复地通过列表中未排序的部分,所以它的最坏情况复杂性为O(n2)。
def bubble_sort(arr):
def swap(i, j):
arr[i], arr[j] = arr[j], arr[i]
n = len(arr)
swapped = True
x = -1
while swapped:
swapped = False
x = x + 1
for i in range(1, n-x):
if arr[i - 1] > arr[i]:
swap(i - 1, i)
swapped = True
return arr
2.选择排序
选择排序也相当简单,优于冒泡排序。如果你要在这两者之间进行选择,那么最好使用默认的“右选择排序”。使用选择排序,我们将输入列表/数组分为两部分:已排序项的子列表和构成列表其余部分的剩余项的子列表。
我们首先在未排序的子列表中找到最小的元素,并将其放在已排序子列表的末尾。因此,我们不断地获取最小的未排序元素,并将其按排序顺序放入已排序的子列表中。此过程将重复进行,直到列表完全排序。
def selection_sort(arr):
for i in range(len(arr)):
minimum = i
for j in range(i + 1, len(arr)):
# 选择最小值
if arr[j] < arr[minimum]:
minimum = j
# 把它放在已排序的数组结尾
arr[minimum], arr[i] = arr[i], arr[minimum]
return arr
3.插入排序
插入排序比冒泡排序和选择排序都要快,而且可以说更加简单。就像在玩纸牌游戏时,洗牌的过程就是反复进行插入排序!在每次循环迭代中,插入排序从数组中删除一个元素。然后在另一个排序数组中查找该元素所属的位置,并将其插入其中。它重复这个过程,直到没有输入元素保留。
def insertion_sort(arr):
for i in range(len(arr)):
cursor = arr[i]
pos = i
while pos > 0 and arr[pos - 1] > cursor:
# 交换列表中的数字
arr[pos] = arr[pos - 1]
pos = pos - 1
# 中断并进行最终交换
arr[pos] = cursor
return arr
4.合并排序
合并排序是一个完美的分而治之的算法例子。使用这种算法只需要通过以下两个主要步骤:
- (1) 连续分割未排序的列表,直到有N个子列表,其中每个子列表都有1个“未排序”的元素,N是原始数组中的元素数。
- (2) 反复合并,即一次将两个子列表合并在一起,生成新的已排序子列表,直到所有元素都完全合并到一个已排序的数组中。
def merge_sort(arr):
# 对最后一个数组进行拆分
if len(arr) <= 1:
return arr
mid = len(arr) // 2
# 在两个部分上递归执行merge_sort
left, right = merge_sort(arr[:mid]), merge_sort(arr[mid:])
# 合并在一起
return merge(left, right, arr.copy())
def merge(left, right, merged):
left_cursor, right_cursor = 0, 0
while left_cursor < len(left) and right_cursor < len(right):
# 将每一个排序并放入结果
if left[left_cursor] <= right[right_cursor]:
merged[left_cursor+right_cursor]=left[left_cursor]
left_cursor += 1
else:
merged[left_cursor + right_cursor] = right[right_cursor]
right_cursor += 1
for left_cursor in range(left_cursor, len(left)):
merged[left_cursor + right_cursor] = left[left_cursor]
for right_cursor in range(right_cursor, len(right)):
merged[left_cursor + right_cursor] = right[right_cursor]
return merged
5.快速排序
快速排序也是一种分而治之的算法,与合并排序一样。尽管它有点复杂,但在大多数标准实现中,它的执行速度比合并排序快得多,而且很少达到O(n2)的最坏情况复杂度。它有三个主要步骤:
- (1) 我们首先从数组中选择一个元素,称之为pivot。
- (2) 将小于轴的所有元素移到轴的左侧;将大于轴的所有元素移到轴的右侧。这称为分区操作。
- (3) 递归地将上述2个步骤分别应用于元素的每个子数组,这些元素的值比上一个轴的值小或大。
def partition(array, begin, end):
pivot_idx = begin
for i in xrange(begin+1, end+1):
if array[i] <= array[begin]:
pivot_idx += 1
array[i], array[pivot_idx] = array[pivot_idx], array[i]
array[pivot_idx], array[begin] = array[begin], array[pivot_idx]
return pivot_idx
def quick_sort_recursion(array, begin, end):
if begin >= end:
return
pivot_idx = partition(array, begin, end)
quick_sort_recursion(array, begin, pivot_idx-1)
quick_sort_recursion(array, pivot_idx+1, end)
def quick_sort(array, begin=0, end=None):
if end is None:
end = len(array) - 1
return quick_sort_recursion(array, begin, end)
--END--
很多同学在学习 Python 时,都会遇到各种各样的算法问题,有些很容易就能搞懂,但是有些就需要一些时间精力来学习。
本文中的5种排序算法比较适合 Python 新手,大多数老程序员对排序算法已经炉火纯青了,都是在面试过程中,被迫学习的。
喜欢本文的同学记得收藏+点赞~
更多内容,欢迎大家关注我们的公众号:为AI呐喊(weainahan)
相关推荐
- pip的使用及配置_pip怎么配置
-
要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...
- Anaconda下安装pytorch_anaconda下安装tensorflow
-
之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...
- Centos 7 64位安装 python3的教程
-
wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...
- 如何安装 pip 管理工具_pip安装详细步骤
-
如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...
- Python入门——从开发环境搭建到hello world
-
一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...
- 生产环境中使用的十大 Python 设计模式
-
在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...
- 如何创建和管理Python虚拟环境_python怎么创建虚拟环境
-
在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...
- 初学者入门Python的第一步——环境搭建
-
Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...
- 全网最简我的世界Minecraft搭建Python编程环境
-
这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...
- Python开发中的虚拟环境管理_python3虚拟环境
-
Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...
- Python内置zipfile模块:操作 ZIP 归档文件详解
-
一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....
- Python内置模块pydoc :文档生成器和在线帮助系统详解
-
一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...
- Python sys模块使用教程_python system模块
-
1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...
- Python Logging 模块完全解读_python logging详解
-
私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...
- 软件测试|Python logging模块怎么使用,你会了吗?
-
Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)