百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python中常用的5大排序算法及其实现代码

off999 2024-10-27 11:50 27 浏览 0 评论

排序是每个 IT 工程师和开发人员必备的知识技能。不仅要通过编程面试,而且要了解算法本身。不同的排序算法完美地展示了算法设计如何对程序的复杂性、速度和效率产生如此大的影响。

让我们来看看排名前5,也是最常见,面试中经常被问到的排序算法,看看如何用Python实现它们!

1.冒泡排序

冒泡排序是 CS 入门课程中最常讲授的一种,因为它清楚地说明了排序的工作原理,同时又简单又易于理解。冒泡排序将逐步遍历列表并比较相邻的元素对。如果元素的顺序错误,则会交换这些元素。重复对列表中未排序部分的遍历,直到对列表进行排序。因为冒泡排序重复地通过列表中未排序的部分,所以它的最坏情况复杂性为O(n2)。

def bubble_sort(arr):
    def swap(i, j):
        arr[i], arr[j] = arr[j], arr[i]

    n = len(arr)
    swapped = True
    
    x = -1
    while swapped:
        swapped = False
        x = x + 1
        for i in range(1, n-x):
            if arr[i - 1] > arr[i]:
                swap(i - 1, i)
                swapped = True
                    
    return arr

2.选择排序

选择排序也相当简单,优于冒泡排序。如果你要在这两者之间进行选择,那么最好使用默认的“右选择排序”。使用选择排序,我们将输入列表/数组分为两部分:已排序项的子列表和构成列表其余部分的剩余项的子列表。

我们首先在未排序的子列表中找到最小的元素,并将其放在已排序子列表的末尾。因此,我们不断地获取最小的未排序元素,并将其按排序顺序放入已排序的子列表中。此过程将重复进行,直到列表完全排序。

def selection_sort(arr):        
    for i in range(len(arr)):
        minimum = i
        
        for j in range(i + 1, len(arr)):
            # 选择最小值
            if arr[j] < arr[minimum]:
                minimum = j

        # 把它放在已排序的数组结尾
        arr[minimum], arr[i] = arr[i], arr[minimum]
            
    return arr

3.插入排序

插入排序比冒泡排序和选择排序都要快,而且可以说更加简单。就像在玩纸牌游戏时,洗牌的过程就是反复进行插入排序!在每次循环迭代中,插入排序从数组中删除一个元素。然后在另一个排序数组中查找该元素所属的位置,并将其插入其中。它重复这个过程,直到没有输入元素保留。

def insertion_sort(arr):
        
    for i in range(len(arr)):
        cursor = arr[i]
        pos = i
        
        while pos > 0 and arr[pos - 1] > cursor:
            # 交换列表中的数字
            arr[pos] = arr[pos - 1]
            pos = pos - 1
        # 中断并进行最终交换
        arr[pos] = cursor

    return arr

4.合并排序

合并排序是一个完美的分而治之的算法例子。使用这种算法只需要通过以下两个主要步骤:

  • (1) 连续分割未排序的列表,直到有N个子列表,其中每个子列表都有1个“未排序”的元素,N是原始数组中的元素数。
  • (2) 反复合并,即一次将两个子列表合并在一起,生成新的已排序子列表,直到所有元素都完全合并到一个已排序的数组中。
def merge_sort(arr):
    # 对最后一个数组进行拆分
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    # 在两个部分上递归执行merge_sort
    left, right = merge_sort(arr[:mid]), merge_sort(arr[mid:])

    # 合并在一起
    return merge(left, right, arr.copy())


def merge(left, right, merged):

    left_cursor, right_cursor = 0, 0
    while left_cursor < len(left) and right_cursor < len(right):
      
        # 将每一个排序并放入结果
        if left[left_cursor] <= right[right_cursor]:
            merged[left_cursor+right_cursor]=left[left_cursor]
            left_cursor += 1
        else:
            merged[left_cursor + right_cursor] = right[right_cursor]
            right_cursor += 1
            
    for left_cursor in range(left_cursor, len(left)):
        merged[left_cursor + right_cursor] = left[left_cursor]
        
    for right_cursor in range(right_cursor, len(right)):
        merged[left_cursor + right_cursor] = right[right_cursor]

    return merged

5.快速排序

快速排序也是一种分而治之的算法,与合并排序一样。尽管它有点复杂,但在大多数标准实现中,它的执行速度比合并排序快得多,而且很少达到O(n2)的最坏情况复杂度。它有三个主要步骤:

  • (1) 我们首先从数组中选择一个元素,称之为pivot。
  • (2) 将小于轴的所有元素移到轴的左侧;将大于轴的所有元素移到轴的右侧。这称为分区操作。
  • (3) 递归地将上述2个步骤分别应用于元素的每个子数组,这些元素的值比上一个轴的值小或大。
def partition(array, begin, end):
    pivot_idx = begin
    for i in xrange(begin+1, end+1):
        if array[i] <= array[begin]:
            pivot_idx += 1
            array[i], array[pivot_idx] = array[pivot_idx], array[i]
    array[pivot_idx], array[begin] = array[begin], array[pivot_idx]
    return pivot_idx

def quick_sort_recursion(array, begin, end):
    if begin >= end:
        return
    pivot_idx = partition(array, begin, end)
    quick_sort_recursion(array, begin, pivot_idx-1)
    quick_sort_recursion(array, pivot_idx+1, end)

def quick_sort(array, begin=0, end=None):
    if end is None:
        end = len(array) - 1
    
    return quick_sort_recursion(array, begin, end)

--END--

很多同学在学习 Python 时,都会遇到各种各样的算法问题,有些很容易就能搞懂,但是有些就需要一些时间精力来学习。

本文中的5种排序算法比较适合 Python 新手,大多数老程序员对排序算法已经炉火纯青了,都是在面试过程中,被迫学习的。


喜欢本文的同学记得收藏+点赞~

更多内容,欢迎大家关注我们的公众号:为AI呐喊(weainahan)

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: