百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

十大排序算法介绍及python实现(python3 排序算法)

off999 2024-10-27 11:50 30 浏览 0 评论

排序算法

排序算法简单地分为两类:比较排序和非比较排序,其中比较排序是通过比较元素的相对大小来实现排序,其复杂度的上限为O(nlogn),所以也称其为非线性时间排序;非比较排序不是通过比较元素相对大小来实现,通常能够以O(n)的复杂度来实现,所以也称其为线性时间排序,下面给出了十种排序算法的复杂度(时间复杂度和空间复杂度)和稳定性

其中,n 表示需要排序的元素数量,k 表示桶的数量

LB三人组

冒泡排序

冒泡排序的思想就是每次循环过程中,大的元素下降,小的元素上升,从而进行排序,具体过程如下:

代码如下:

def bubble_sort(a):
    n = len(a)
    flag = False   #设置标志位,避免无效排序
    for i in range(n-1, 0, -1):
        for j in range(i):
            if a[j] > a[j + 1]:
                a[j], a[j + 1] = a[j + 1], a[j]
                flag = True
        if not flag:
            break
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(bubble_sort(a))

选择排序

选择排序的思想就是每次循环的过程中找到最小的值放在第一位,依次循环找到其他较小的值放在接下来的位置,通过查找进行排序,其过程如下:

代码如下:

def select_sort(a):
    n = len(a)
    for i in range(n - 1):
        min_index = i
        for j in range(i+1, n):
            if a[j] < a[min_index]:
                min_index = j
        a[i], a[min_index] = a[min_index], a[i]
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(select_sort(a))

插入排序

插入排序的思想就是和之前的元素进行比较,大的元素放在后面,小的元素放在前面,具体过程如下:

代码如下:

def insert_sort(a):
    n = len(a)
    for i in range(1, n):
        cur_val = a[i]
        pos = i
        while pos > 0 and a[pos - 1] > cur_val:
            a[pos] = a[pos - 1]
            pos -= 1
        a[pos] = cur_val
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(insert_sort(a))

希尔排序

希尔排序是插入排序的另一种变化,通过有间隔的插入排序并逐步减小间隔实现最终的排序,其过程如下:

代码如下:

def shell_sort(a):
    n = len(a)
    gap = n // 2
    while gap > 0:
        for i in range(gap):
            gap_insert(a, i, gap)   #有间隔的插入排序
        gap //= 2
    return a
def gap_insert(a, sta, gap):
    for i in range(sta + gap, len(a), gap):
        cur_val = a[i]
        pos = i
        while pos > sta and a[pos - gap] > cur_val:
            a[pos] = a[pos - gap]
            pos -= gap
        a[pos] = cur_val
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(shell_sort(a))

NB三人组

归并排序

归并排序是基于分治的思想,将需要排序的数据分为两个子序列,对子序列进行排序,然后将排好序的子序列进行合并实现最终的排序,过程如下:

代码如下:

def merge_sort(a):
    if len(a) <= 1:
        return a
    n = len(a) // 2
    left = merge_sort(a[:n])    #子序列归并排序
    right = merge_sort(a[n:])
    return merge(left, right)   #合并排好序的子序列
def merge(left, right):
    l, r = 0, 0
    res = []
    while l < len(left) and r < len(right):
        if left[l] < right[r]:
            res.append(left[l])
            l += 1
        else:
            res.append(right[r])
            r += 1
    res.extend(left[l:])
    res.extend(right[r:])
    return res


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(merge_sort(a))

堆排序

堆排序思想是建立一个大根堆,将堆顶位置与最后一个进行交换,再建立大根堆,重复上述操作实现排序,过程如下:

代码如下:

def heap_sort(a):
    n = len(a)
    for i in range(n // 2 - 1, -1, -1):
        siftdown(a, i, n - 1)          #建立大根堆
    for j in range(n - 1, 0, -1):
        a[0], a[j] = a[j], a[0]        #交换后,继续建立大根堆
        siftdown(a, 0, j-1)
    return a
def siftdown(a, sta, end):
    root = sta                  #根节点
    while True:
        child = 2 * root + 1    #左孩子节点
        if child > end:
            break
        if child + 1 <= end and a[child] < a[child + 1]:   #存在右孩子节点
            child += 1
        if a[root] < a[child]:                      #维护大根堆
            a[root], a[child] = a[child], a[root]
            root = child
        else:
            break
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(heap_sort(a))

快速排序

快速排序的思想是选择一个基准线,将比基准线小的放在一边,比基准线大的放在另一边,通过对两部分进行排序实现最终的排序,过程如下:

代码如下:

def quick_sort(a):
    if len(a) <= 1:
        return a
    left = []
    right = []
    base = a.pop()
    for x in a:
        if x < base:
            left.append(x)
        else:
            right.append(x)
    return quick_sort(left) + [base] + quick_sort(right)


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(quick_sort(a))

线性时间排序

计数排序

计数排序的思想是建立计数器,统计每个数字出现的次数,再将统计的结果输出实现最终的排序,过程如下:

代码如下:

def count_sort(a):
    n = len(a)
    max_val = max(a)
    count = [0] * (max_val + 1)
    for i in range(n):
        count[a[i]] += 1
    res = []
    for i in range(max_val + 1):
        for j in range(count[i]):
            res.append(i)
    return res



if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(count_sort(a))

桶排序

桶排序的思想就是将对应范围内的元素放进桶中,对桶中的元素进行排序,然后再将元素按照顺序取出,完成最终的排序,过程如下:

代码如下:

def bucket_sort(a,n=100,max_num=10000):
    buckets = [[] for _ in range(n)]   #创建桶
    for x in a:
        i = min(x // (max_num // n) , n - 1)
        buckets[i].append(x)           #将对应的数据放进桶中
        for j in range(len(buckets[i]) - 1 , 0 ,-1):
            if buckets[i][j] < buckets[i][j - 1]:
                buckets[i][j] , buckets[i][j - 1] = buckets[i][j - 1] , buckets[i][j]
            else:
                break
    result = []
    for bin in buckets:
        result.extend(bin)
    return result


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(bucket_sort(a))

基数排序

基数排序的思想就是将整数按位分为不同的数字,对每个数字进行比较,具体过程如下:

代码如下:

def radix_sort(a):
    max_val = max(a)
    it = 0
    while 10 ** it <= max_val:
        buckets = [[] for _ in range(10)]
        for x in a:
            i = (x // (10 ** it)) % 10
            buckets[i].append(x)
        a = [j for i in buckets for j in i]
        it += 1
    return a


if __name__ == "__main__":
    a = [90, 5, 83, 42, 12, 15]
    print(radix_sort(a))

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: