百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

小白学数据结构-排序算法Python(冒泡、选择、快速、希尔等等)

off999 2024-10-27 11:53 20 浏览 0 评论

排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们通常所说的排序算法往往指的是内部排序算法,即数据记录在内存中进行排序。

建议收藏,想要各类学习资料的看到最后!

内部排序的分类:

  • 一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有: 冒泡排序,选择排序,快速排序,插入排序,希尔排序,归并排序,堆排序等。
  • 另一种是非比较排序,时间复杂度可以达到O(n),主要有: 计数排序,基数排序,桶排序等。

常见排序算法的一些特性:

冒泡排序

通过上面的动图也可以看出来,冒泡通过两重循环遍历每一个数后将最大的’冒’出去

冒泡是相邻元素之间的比较,每次把最大的’冒’出去时间复杂度:O(n^2)

选择排序

选择排序相比冒泡排序不稳定,时间复杂度也是。

选择排序没趟都会产生最小值,它不是相邻元素的比较而是在该元素设置一个索引i。

然后与数组的其他元素依次比较(除了上一个索引值),直到找到小于该元素(索引j)时交换两元素,

接着继续从i索引(此时已经不是原来的数值)值与索引j+1值比较。重复上述比较过程:

冒泡是相邻元素比较,选择不是相邻元素比较 把最小的选出来

快速排序

(1) 从数列中挑出一个基准值。

(2) 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于最终它应该在的地方。

(3) 递归地把”基准值前面的子数列”和”基准值后面的子数列”进行排序。

快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。

假设有如下数组,将两个哨兵设在左右端,最左端的值为基准

1.右边向左运动,直到找到一个比基准小的数

2.左边向右运动,直到找到一个比基准大的数

.交换两个数

4

如果两个哨兵不想遇,则继续上述步骤

5

遇之后和基准交换

‘6’就永远在它最终应该待的地方了 ,对6的前一半和后一半进行上述完整操作即可(递归)

参考文献:

http://developer.51cto.com/art/201403/430986.htm

插入排序

初始时

  1. a[0]自成1个有序区,无序区为a[1..n-1]。令i=1
  2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
  3. i++并重复第二步直到i==n-1。排序完成。

直接插入排序的时间复杂度是O(N^2)

希尔排序

是插

排序的一种更高效的改进版本。希尔排序是非稳定排序算法。分组的插入排序

注:

如果索引i,j大于步长gap时,应该一直往前迭代

如代码中的: j-=gap第一次交换数据后,看它是后面的数否还小于前面的数

如2 3 1 5 9 6这个序列以1位步长的话

一次交换后2 1 3 5 9 6此时j指向第二个数,i指向第三个数

所以交换后应该用j-gap往前查看是否前面的更小

归并排序

法的一种,上图可以清晰的描述排序过程

先拆分(递归),后合并

效率为 O(n log n)

'''
冒泡排序
重复走访过排序的序列,一次比较两个元素,如果他们的顺序错误就将他们进行交换,一次冒上来的是最小的,其次是第二小。
时间复杂度:(n^2)
空间复杂度:O1)
稳定性:稳定
''
def BubbleSort(data):
 for i in range(len(data)):
 for j in range(len(data)-i-1):
 if data[j]>data[j+1]:
 data[j+1] , data[j] = data[j] , data[j+1]
'''
选择排序
择排序相比冒泡排不稳定,时间复杂度也是。选择排序没趟都会产生最小值,它不是相邻元素的比较而是在该元素设置一个索引i。
然后与数组的其他元素依次比较(除了上一个索引值),直到找到小于该元素(索引j)时交换两元素,
接着继续从i索引(此时已经不是原来的数值)值与索引j+1值比较。重复上述比较过程……简单的原理图如下:
冒泡是相邻元素比较,择不是相邻元素比较
'''
def SelectionSort(data):
 for i in range(len(data)):
 for j in range(i+1,len(data)):
 if data[j]<data[i]:
 data[i] , data[j] = data[j] , data[i]
'''
快速排序
快速序流程:
(1) 从列中挑出一个基准值。
(2) 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于最终它应该在的地方。
(3) 递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。
快速排序的时间复杂度在最坏况下是O(N2),平均的时间复杂度是O(N*lgN)。
''' 
def QuickSort(lists, left, right):
 # 快速排序
 if left >= right:
 return lists
 key =left
 low = left
 high = right
 while left < right:
 while left < right and lists[right] >= lists[key]:#如果右边比基准小,停下
 right -= 1
 while left < right and lists[left] <= lists[key]:#如果左边比基准大,停下
 left += 1
 lists[right],lists[left]=lists[left],lists[right]#交换现在的左右值
 lists[right] ,lists[key]=lists[key],lists[right] #left和right汇合后和基准交换
 print_data(ata)#交换过程
 QuickSort(lists, low, left - 1)
 QuickSort(lists, left + 1, high)
 return lists
'''
直接插入排序
1. 初始a[0]自成1个有序,无序区为a[1..n-1]。令i=1
2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3. i++并重复第二步直到i==n-1。排序完成。
直接插入排序的时间复杂度是O(N2)
假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?N-1!因此,直接插入排序的时间复杂度是O(N2)。
'''
def InsertionSort(data):
 for i in range(1,len(data)):
 key=data[i]
 j=i-1
 while j>=0:
 if data[j]>key:
 data[j+1]=data[j]
 data[j]=key
 j-=1
'''
希尔排序
是插入排序的一种更高效的改进版本。希尔序是非稳定排序算法。分组的插入排序
j-=gap第一次交换数据后,看它是后面的否还小于前面的数
如2 3 1 5 9 6这个序列以1位步长话
一次交换后2 1 3 5 9 6此时j指向第二个数,i指向第三个数 
所以交换后应该用j-gap往前查看是否前面的更小
'''
def ShellSort(data):
 gap=int(len(data)/2) #排序的分组
 while gap>0:
 for i in range(gap,len(data)):
 j=i-gap
 while data[j]>data[i] and j >=0:
 data[j],data[i]=data[i],data[j]
 j-=gap
 i-=gap
 gap=int(gap/2)
'''
归并排序
先拆分,后合并
'''
de MergeSortls):
 if len(ls)<2:
 return ls
 mid = len(ls) >> 1 #相当于除2取整
 left = MergeSort(ls[:mid])
 right = MergeSort(ls[md:])
 return merge(left,right)
def merge(left, right):
 result = []
 i, j = 0, 0
 while i < len(left) and j < len(right):
 if left[i] < right[j]:
 result.append(left[i])
 i += 1
 else:
 reslt.append(right[j])
 j += 1
 result += left[i:]
 result += right[j:]
 return result
'''打印函数'''
def print_data(data:
 for i in data:
 print(i,end=' ')
 print() 
'''测试代码'''
data=[5,9,7,2,3,1,6BubbleSort(data)
print_data(data)
data=[5,9,7,2,3,1,6]
SelectionSort(data)
print_data(data)
data=[5,9,7,2,3,1,6]
QuickSort(data,0,6)
print_data(data)
data=[5,9,7,2,3,1,6]
InsertionSort(data)
print_data(data)
data=[5,9,7,2,3,1,6]
ShellSort(data)
print_data(data)
data=[5,9,7,2,3,1,6]
data=MergeSort(data)
print_data(data)

“我自己是一名从事了多年开发的Python老程序员,辞职目前在做自己的Python私人定制课程,今年年初我花了一个月整理了一份最适合2019年学习的Python学习干货,从最基础的到各种框架都有整理,送给每一位喜欢Python小伙伴,想要获取的可以关注我的头条号并在后台私信我:01,即可免费获取。"

相关推荐

pip的使用及配置_pip怎么配置

要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...

Anaconda下安装pytorch_anaconda下安装tensorflow

之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...

Centos 7 64位安装 python3的教程

wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...

如何安装 pip 管理工具_pip安装详细步骤

如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...

Python入门——从开发环境搭建到hello world

一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...

生产环境中使用的十大 Python 设计模式

在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...

如何创建和管理Python虚拟环境_python怎么创建虚拟环境

在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...

初学者入门Python的第一步——环境搭建

Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...

全网最简我的世界Minecraft搭建Python编程环境

这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...

Python开发中的虚拟环境管理_python3虚拟环境

Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...

Python内置zipfile模块:操作 ZIP 归档文件详解

一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....

Python内置模块pydoc :文档生成器和在线帮助系统详解

一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...

Python sys模块使用教程_python system模块

1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...

Python Logging 模块完全解读_python logging详解

私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...

软件测试|Python logging模块怎么使用,你会了吗?

Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...

取消回复欢迎 发表评论: