Python进程和线程保姆式教学,1个台机子多只手干活的秘籍
off999 2024-10-27 11:55 26 浏览 0 评论
进程线程有多重要?刚开始学Python的时候你可能还没有感觉到,因为你写的代码从上到下执行一遍就可以了,但实际上这很初级,实际开发写项目的时候,为了充分利用电脑配置来加快程序进度,我们往往会用到多进程多线程。
就比如说我们的爬虫,没有多进程多线程的程序就像只能一只手干活,而开启了多进程多线程之后就是几只几十只手在干活,你需要10分钟才能爬完的数据,别人可能1分钟不到就弄完了。
私信小编01即可获取大量Python学习资源
进程线程也是Python入门的最后一个板块的知识,基本上我的Python新手入门教程系列文章就要更新完了。
在开始Python的进程和线程教学之前,有一些关于基础概念需要给大家进行讲解。
一、多任务操作系统
操作系统可以执行多个任务,比如我们的Windows系统,除了目前在执行的、你能看得到的几个任务,还有很多后台正在执行的任务,可以用Ctrl+Alt+Del键调出任务管理器看一下就知道了。
我的电脑配置经常会看到有几核处理器的属性,例如我的电脑是12核的,也就是说电脑最多能同时执行12个任务,最多运行12个进程同时进行。
但为什么我们的电脑却能够同时运行几百个任务呢?
其实这得益于操作系统的任务调度,大部分的操作系统是采用抢占时间片的形式进行调度。系统在极其微小的时间内,在多个任务之间进行极快速的切换,比如说8核的操作系统理论上1秒钟之内只能同时执行8个任务,但是系统在1秒钟之内可能在上百个任务之间进行切换,A任务执行一下、B任务执行一下、C任务执行一下…结果1秒钟之内很多任务都能被执行到,造成了肉眼可见的几百个任务在一直执行。
术语叫“宏观并行,微观串行”,实际上电脑在极端的时间内只能执行不超过配置核数的任务数,8核还是只能执行8个任务。
1.何为进程?
既然讲到了任务,那么进程就是任务,1个进程就相当于1个任务,是操作系统分配资源的最小单位。在python中,想要实现多任务可以使用进程来完成,进程是实现多任务的一种方式。
2.何为线程?
进程的多个子任务就称之为线程,线程是进程的最小执行单位, 一个进程可以有很多线程,每个线程执行的任务都不一样。
Python既支持多进程又支持多线程,接下来我们就开始进入Python的进程与线程的学习。
二、Python的多进程multiprocessing(包)
如果你利用多进程,你的Python代码是从头到尾逐行执行的,这其实就是在执行1个进程,这一点应该很好理解。
要想更多利用CPU资源,我们可以利用多进程,这里介绍一个Python多进程时常用的包multiprocessing,它拥有很多的功能,比如子进程、通讯、共享、执行不同的形式等等,我们来了解一些常用的。
1.Process——进程类
Process是multiprocessing里面的一个进程类,通过它就能实现多进程。我们先来看一下它的用法,后面我们会有实际的例子去讲述。
Process(target,name,args,kwargs)- target是目标,在哪里新开进程让系统去执行?得给系统一个目标。
- name是进程的名字,你可以设置也可以不设置,默认是Process-N,N是从1,2,3…N,系统默认从小到大取名。
- args和kwargs是参数,可用于传递到目标。
Process里面有很多方法,其中最常用的就是start()启动进程的方法。
进程名.start() #开始进程举例:写好的代码如下,我想看看开启和没开启多进程调用函数的效果。
import time
#2个要同时执行的函数
def music() :
for i in range(5): #执行5次
print("听音乐中...")
time.sleep(0.2) #延迟0.2s,目的是让效果对比更明显一些
def movie():
for i in range(5):
print("看视频中...")
time.sleep(0.2) #延迟0.2s
music()
movie()
print("主进程执行完毕")
在没有开启多进程时,执行效果如下:
可以看到,这是很正常的运行情况,程序从上运行到下,逐行运行,music()里面的三次循环没有执行完毕就不会执行movie()里面,以及这两个函数如果没有执行完毕,就不会执行最后一行的print(“主进程执行完毕”)。
我们再来看在上面案例的代码中加入多进程:
import time
import multiprocessing
# 2个要同时执行的函数
def music():
for i in range(5): # 执行5次
print("听音乐中...")
time.sleep(0.2) # 延迟0.2s,目的是让效果对比更明显一些
def movie():
for i in range(5):
print("看视频中...")
time.sleep(0.2) # 延迟0.2s
if __name__ == "__main__": # 解决Windows系统下调用包时的递归问题
# 创建子进程
music_process = multiprocessing.Process(target=music)
movie_process = multiprocessing.Process(target=movie)
# 启用进程
music_process.start()
movie_process.start()
print("主进程执行完毕")
代码中我加入了一个if语句来判断__name__这个,为什么?因为在Windows系统下, multiprocessing这个包会发生递归现象,就是会在“导入模块—调用模块”之间反复执行,不信你可以把if语句去掉,把里面的代码全部放到外面来执行就会报错,这是Windows系统下会发生的一个现象,mac、linux等系统是不用加ifl来做判断的。
关于__name__ = "main"这个知识点我在模块与包的初始化时候有讲过,不懂的可以回去看一下。
运行效果
可以看出来,这开启进程之后,代码运行时是有3个进程同时进行的,一个是从上往下执行的主进程,执行到下面输出“主进程执行完毕”,另外两个子进程去执行music()和movie()进程,从他们的执行速度来看,它们是同时在进行的,所以没有像刚才那样非要等其中一个函数里面的代码执行3遍才开始第2个函数。
同样的代码,你们的执行效果可能会跟我有所差异,因为效果是根据系统当前的状况去随机分配的,但并不影响你能看出来它的结果是多线程在进行。
最后补充一下,前面我们讲过Process里面有args和kwargs可进行参数传递,args是普遍参数的传递,kwargs是以字典的形式进行参数传递,我们还是以上面的代码为例,进行一下有参数传递的多进行。
2.获取当前进程的编号
前面我们讲到了代码执行时有多个进程在同时进行任务,那么怎么样查看当前进程的编号来得知目前有哪些进程在运行呢?哪些是主进程哪些是子进程呢?3个方法,我们先来看一下方法,后面再结合例子一起使用。
(1)获取当前进程的编号:
需要用到一个os模块里面的getpid()方法,用法如下:
os.getpid()(2)获取当前进程的名字
这里用的还是multiprocessing包,里面有个current_process()的方法,用法如下:
multiprocessing.current_process()(3)获取当前父进程(主进程)的编号
子进程是属于哪个父进程的?这个用的是os模块里面的getppid() ,用法如下:
os.getppid()那么方法都看到了,我们来在刚才的例子的基础上,获取并打印一下当前进程的名字、编号以及父进程的编号。
import time
import multiprocessing
import os
# 2个要同时执行的函数
def music():
print("music子进程名字:", multiprocessing.current_process())
print("music子进程编号:", os.getpid())
print("music所属主进程的编号:", os.getppid())
for i in range(5): # 执行5次
print("听音乐中...")
time.sleep(0.2) # 延迟0.2s,目的是让效果对比更明显一些
def movie(a, b):
print("movie子进程名字:", multiprocessing.current_process())
print("movie子进程编号:", os.getpid())
print("movie所属主进程的编号:", os.getppid())
for i in range(5):
print("看视频中...")
time.sleep(0.2) # 延迟0.2s
if __name__ == "__main__": # 解决Windows系统下调用包时的递归问题
# 创建子进程
music_process = multiprocessing.Process(target=music)
movie_process = multiprocessing.Process(target=movie, kwargs={"a": 30, "b": 40})
# 启用进程
music_process.start()
movie_process.start()
print("主进程编号:",os.getpid())
运行结果:
可以只要我们使用获取线程的方法的线程,都能被打印出来编号和名字。
三、多线程Threading模块
多进程能同时运行几个任务,前面我们讲过进程的最小单位是线程,那么线程也同样可以进行多个任务。如果一个进程只有1个任务(主进程),那么也可以说是只有1个线程,就比如我们不使用多进程运行代码的时候,这时候就可以说1个主进程或1个主线程。
1.多线程的类Thread类
多线程常用的一个模块是threading,里面有个教Thread的类,跟前面我们将多进程时用到的Process类差不多,我们先来看看用法:
Thread(target=None,name=None,args=(),kwargs=None)- target:可执行目标
- name:线程的名字默认Thread-N
- args/kwargs:目标参数
同样的,多线程也要有开启的方法,跟前面的也差不多:
start()还有获取线程名字的方法:
threading.current_thread()知道了这些知识点,我们开始举例:用跟上面差不多的例子去使用一下我们的多线程。
import threading,time
def music(name,loop):
for i in range(loop):
print("听音乐 %s , 第%s次"%(name,i))
time.sleep(0.2)
def movie(name,loop):
for i in range(loop):
print("看电影%s , 第%s次"%(name,i))
time.sleep(0.2)
if __name__ =="__main__":
music_thread = threading.Thread(target=music,args=("最亲的人",3))
movie_thread = threading.Thread(target=movie,args=("唐探2",3))
music_thread.start()
movie_thread.start()
print("主线程执行完毕")
运行结果:
听音乐 最亲的人 , 第0次
看电影唐探2 , 第0次
主线程执行完毕
听音乐 最亲的人 , 第1次看电影唐探2 , 第1次
看电影唐探2 , 第2次听音乐 最亲的人 , 第2次可以看出来,我们的多线程其实是跟多进程差不多的,同样可以运行多个任务,这里我们还增加了参数的使用。
2.继承Thread类
我们除了用上面的方法实现多线程任务,还可以用继承类的方式去实现多线程。
举例:通过多线程的方式,去打印“凉凉”和“头发没了"。
import threading,time
#多线程的创建
class MyThread(threading.Thread):
def __init__(self,name): #初始化
super().__init__() #调用父类Thread的初始化方法
self.name = name #name变成实例属性
def run(self):
#线程要做的事情
for i in range(5):
print(self.name)
time.sleep(0.2)
#实例化子线程
t1 = MyThread("凉凉")
t2 = MyThread("头发没了")
t1.start()
t2.start()
MyThread这个类是我们自己创建的,它是继承于父类threading.Thread ,同时我们需要写上MyThread的初始化方法,每当被调用的时候把准备工作做好,super().int() 这个我们也讲过了,在前面的面向对象时有讲过,不懂的可以去看看面向对象那篇文章的内容。
运行结果:
凉凉
头发没了
凉凉
头发没了
凉凉头发没了
凉凉头发没了
凉凉
头发没了
随机效果是有的,你们的效果和我的可能会不一样,每台电脑在运行多线程代码时,哪个线程能够抢到时间片谁就先执行。
通过类Thread继承一样可以实现多线程。
结语
进程线程讲完之后,基本上Python入门的所有知识点都讲完了,剩下的就是一章附加文章了。基本上从开始的Python基础到后面的高级编程板块的内容,如果你学完了,你去进阶Python的任何方向都是OK的,加油!
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
慕ke 前端工程师2024「完整」
-
8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
