Python小世界:匿名函数、高阶函数、推导式
off999 2024-10-28 16:47 41 浏览 0 评论
搞Python已有多年,一直觉得什么都会,但是有时候实操起来,才觉得很多底层基础的知识都没有彻底的灵活掌握。 另外,网上关于Python基础知识的各种普及已有太多太多。 附上相关大神的技术栈:
- Python3官方文档
- Python3菜鸟教程
- Python3廖雪峰的网站
本人的写作水平有限,肯定比不上各种大佬的技术文章。博客只是对于自身知识的总结,提炼,当然如果能够帮助到各位看客,木子本人也非常高兴。
简述
闲话不多说,本篇博客,主要针对Python的
匿名函数lambda
高阶函数map reduce filter
推导式list set dict
三个方面来汇总。
匿名函数
当我们在传入函数时,有些时候,不需要显式地定义函数,那么此时匿名函数就灰常方便了。
Python官方文档--lambda
示例: lambda a, b: a + b 实际上就是下面代码的简写
def func(a, b): return a + b 复制代码
对于匿名函数而言,不用写 return , 返回值就是该表达式的结果 。 因为没有函数名字,不必担心函数名的冲突,此外,匿名函数也是一个函数对象,可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x >>> f <function <lambda> at 0x10453d7d0> >>> f(6) 36 复制代码
那么在一些简单的情况下,尽情的使用匿名函数吧。
高阶函数
何为高阶函数?
能接受函数做参数的函数
因Python中一切皆对象,变量名可以指向函数,而函数的参数可以接收变量,那么一个函数就可以接收另外一个函数作为参数。这就是传说中的 高阶函数 。
map()
老规矩,官方文档走一波:
Python官方文档--map()
针对map(function, iterable, ...)函数,可 结合lambda 使用,示例如下:
>>> list(map(lambda x:x*x, [1,2,3,4,5])) >>> [1, 4, 9, 16, 25] 复制代码
注:Python3中,需要使用list()将map函数返回值转化为列表,若无list(),则结果为:
>>> map(lambda x:x*x, [1,2,3,4,5]) >>> <map at 0x20b225167f0> 复制代码
此外,map()函数不改变原有的 list,而是返回一个新的 list。
reduce()
为便于掌握,对比,在总结完map()函数后,我们来看下reduce()函数。
Python官方文档--reduce()
那么从官方文档的介绍来看:
reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。
示例如下:
from functools import reduce >>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5]) 复制代码
对结果演示即: ((((1+2)+3)+4)+5) = 15 注:
reduce()函数可接收第三个参数,作为函数的起始值
filter()
filter()函数顾名思义,进行过滤判断。
Python官方文档--filter()
对于filter()函数来说,其 接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False。
示例:过滤出1~100中平方根是整数的数:
import math def func(x): r = int(math.sqrt(x)) # math.sqrt()计算平方根 if r * r == x: return x >>> list(filter(func, range(1, 101))) >>> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 复制代码
那么从该示例中,我们能够得出结论: filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。
推导式
推导式在日常工作中是比较好的装逼利器,对于列表,字典,集合的操作,很多时候一行代码即可解决,如若没有,那说明内力还不够深厚,嘎嘎嘎。。。。 对于推导式而言,我们就从
列表推导式
字典推导式
集合推导式
来总结,当然也就这三种。。。
列表推导式
示例:
from random import randint >>> [randint(1, 10) for _ in range(20)] >>> [8, 2, 7, 9, 7, 3, 10, 10, 2, 10, 5, 9, 4, 7, 9, 2, 10, 6, 10, 7] 复制代码
字典推导式
示例:
>>> {x: x * x for x in range(10) if x % 3 == 0}
>>> {0: 0, 3: 9, 6: 36, 9: 81}
复制代码
集合推导式
鉴于集合具有去重效果,那么我们创建示例,来和列表推导式对比:
from random import randint
>>> {randint(1, 10) for _ in range(20)}
>>> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
复制代码
很神奇有木有,目前写的只是最基本的推导式写法,在实际的工作中,可以添加各种判断,随意灵活运用。
总结
本篇博客侧重于实际工作中代码的简化,重构。若能结合实际工作需求,灵活运用,则能大大简化代码,也方便他人阅读,久而久之,自己的水平也逐渐提高。 起止一个爽字了得!!!最后小编自己也是一个有着6年工作经验的工程师,关于python编程,自己有做材料的整合,一个完整的python编程学习路线,学习资料和工具。想要这些资料的可以关注小编,并在后台私信小编:“01”领取,希望能帮助到你。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
