百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

TensorFlow2.1正式版上线:最后一次支持Python2,进一步支持TPU

off999 2024-09-18 22:28 17 浏览 0 评论

机器之心报道

参与:杜伟、一鸣

TensorFlow2.1的更新,能够让弃坑的用户回心转意吗?


去年 10 月,谷歌才发布了 TensorFlow 2.0 正式版。时隔三个月后,昨日官方发布了 TensorFlow 2.1,本次版本更新带了了多项新特性、功能改进和 bug 修复。


从本次更新的日志来看,TensorFlow 2.1 将成为最后一个支持 Python2 的版本了。同时,本次更新的重点是增加了对 TPU 的多项支持,而 tf.keras 和 tf.data 这两个常用的 API 也得到了很多新的更新。据悉,TensorFlow 2.1 的 CUDA 版本为 10.1,cuDNN 版本为 7.6。


在对操作系统的支持上,Windows 和 Linux 系统的 TensorFlow pip 版本默认支持 GPU。也就是说,如果使用 pip install tensorflow,则版本默认为是 gpu 版本(原始的 tensorflow-gpu 版本依然存在)。当然,不管有没有英伟达版本的 GPU,tensorflow 依然能够运行。
如果需要使用 CPU 版本,用户的安装命令应该为:pip install tensorflow-cpu。
项目地址:https://github.com/tensorflow/tensorflow/releases
对于本次更新的内容,机器之心整理如下:
进一步支持 TPU
TensorFlow 2.1 最大的亮点在于进一步增加对 TPU 的支持。从 tf.keras、tf.data 等 API 的功能调整和更新来看,现在使用 TPU 加载数据集、训练和模型推理会更方便一些。
tf.keras 对 TPU 的支持

  • 增加了在 GPU 和 Cloud TPUs 上对混合精度(mix precision)的支持;
  • tf.Keras 中的 compile、fit、evaluate、predict 等 API 都支持 Cloud TPUs 了,而且支持所有的 Keras 模型(即以 sequential、functional 和子类方式构建的模型都支持);
  • 现在可以使用 Cloud TPU 进行自动外部编译(automatic outside compilation)了,这使得 tf.summary 和 Cloud TPUs 能够更好地一起使用;
  • 分布式策略和 Keras 中的动态批大小控制已支持 Cloud TPUs;
  • 支持在 TPU 上使用 numpy 格式的数据进行 fit、evaluate 和 predict。


tf.data 对 TPU 的支持
tf.data.Dataset 现在支持自动数据分发(automatic data distribution)和分布式环境下的分片操作,包括在 TPU pods 上都可以。
tf.distribute 对 TPU 的支持
支持在 TPU 和 TPU pods 上定制训练循环,通过以下 API 即可:
strategy.experimental_distribute_dataset、 strategy.experimental_distribute_datasets_from_function、strategy.experimental_run_v2 和 strategy.reduce。
重要 API 更新
TensorFlow 2.1 进行了以下一些重要的 API 更新:
tf.keras

  • 推出了 TextVectorization 层,该层将原始字符串作为输入,并兼顾到了文本规范化、标记化、N 元语法生成和词汇检索;
  • 允许 Keras .compile、.fit、.evaluate 和.predict 在 DistributionStrategy 范围之外,前提是模型在该范围内构建;
  • 诸多流行模型的 Keras 参考实现都可以在 TensorFlow Model Garden(https://github.com/tensorflow/models/tree/master/official)中获得;


tf.data
tf.data datasets 和分布式策略都进行了改进,以获得更好的性能。需要注意的是 dataset 会变得有些不同,重新进行了分批的数据集会有多个副本;而分布式策略也会进行调整,如下所示:

tf.data.experimental.AutoShardPolicy(OFF, AUTO, FILE, DATA) tf.data.experimental.ExternalStatePolicy(WARN, IGNORE, FAIL)


TensorRT
现在 TensorRT 6.0 是默认的版本,这一版本增加了对更多 TensorFlow 算子的支持,包括 Conv3D、Conv3DBackpropInputV2、AvgPool3D、MaxPool3D、ResizeBilinear 和 ResizeNearestNeighbor。
此外,TensorFlow 和 TensorRT 的 Python 交互 API 被命名为 tf.experimental.tensorrt.Converter。
Bug 修复
TensorFlow 2.1.0 还修复了以前版本中出现的一些 Bug,整理如下:
tf.data

  • 修复当 sloppy=True 时 tf.data.experimental.parallel_interleave 出现的并发问题;
  • 增加 tf.data.experimental.dense_to_ragged_batch();
  • 扩展 tf.data 语法解析选项,从而支持 RaggedTensors。


tf.distribute
修复使用 tf.distribute.Strategy 时 GRU 崩溃或输出错误结果的问题。
tf.keras

  • 导出 tf.keras.backend 中的 depthwise_conv2d;
  • 在 Keras Layers 和 Models 中,删除 trainable_weights、non_trainable_weights 和 weights 中变量的重复数据;
  • Kerasmodel.load_weights 现将 skip_mismatch 接受为一种自变量;
  • 修复 Keras 卷积层的输入形状缓存的行为;
  • Model.fit_generator、Model.evaluate_generator、Model.train_on_batch, Model.test_on_batch 和 Model.predict_on_batch 方法现遵循 run_eagerly 属性,并且在默认情况下,使用 tf.function 能够正确地运行。请注意,Model.fit_generator、Model.evaluate_generator 和 Model.predict_generator 是不宜用的端点。这些端点现已被归入支持生成器和序列的 Model.fit、Model.evaluate 和 Model.predict 中。

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: