Python matplotlib绘制折线图(超详细)
off999 2024-10-31 14:02 26 浏览 0 评论
Python matplotlib绘制折线图
matplotlib是Python中的一个第三方库。主要用于开发2D图表,以渐进式、交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力。
一、安装matplotlib
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
二、matplotlib图像简介
matplotlib的图像分为三层,容器层、辅助显示层和图像层。
1. 容器层主要由Canvas、Figure、Axes组成。
Canvas位于图像的最底层,充当画布的作用。
Figure位于Canvas之上,指画布上的一整张图像。
Axes位于Figure之上,指Figure中的单个图表,一个Figure中可以有一个或多个Axes,即一张图像中可以有一个或多个图表。
2. 辅助显示层是单个图表(Axes)中用来提供辅助信息的层。
辅助显示层主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。
辅助层可使图像显示更加直观,提高可读性。
3. 图像层指Axes内通过plot、scatter、bar、histogram、pie等函数绘制出的图形。
三、matplotlib绘制折线图
# coding=utf-8
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores)
plt.show()
运行结果:
figure(): 创建图像并设置图像的大小等属性,返回一张图像,可以传入很多参数,常用参数有两个。figsize参数传入一个元组(width, height),设置图像的大小。dpi传入一个整数值,设置图像的清晰度。
plot(): matplotlib中绘制折线图的函数。可以传入很多参数,一般传入两个列表,分别是折线图中的x值和y值。上面的例子中用了NBA2020年季后赛James的得分数据。
show(): 展示图像。
在上面的图表中,x坐标值中有中文,首次使用matplotlib绘图时中文无法正常显示。要解决中文显示问题,需要下载安装SimHei字体或直接搜索SimHei然后找一个正确的网站下载。下载完成后,在Windows下直接解压双击安装。安装完成后删除~/.matplotlib中的缓存文件,并创建配置文件matplotlibrc,将matplotlibrc中的内容设置为如下内容。
font.family : sans-serif
font.sans-serif : SimHei
axes.unicode_minus : False
操作命令如下截图,完成后图像中就可以正常显示中文了。
使用上面的代码,已经实现了简单的折线图,但展示的效果很差,所以需要进行优化,使图像展示得更好。
四、matplotlib优化折线图
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores, c='red')
plt.scatter(game, scores, c='red')
y_ticks = range(50)
plt.yticks(y_ticks[::5])
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("得分", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯得分", fontdict={'size': 20})
plt.show()
运行结果:
在使用plot()函数绘图时,可以通过c='颜色'来设置折线图的颜色。
scatter(): 绘制散点图。折线图是用直线连接相邻的两个点形成的,但是连成折线后点的显示不明显。scatter可以单独对点进行设置,展示得更明显。
yticks(): 用于设置y轴坐标的范围,传入一个可迭代对象(如range()函数)。最开始绘制的折线图中,图像的y轴坐标范围是数据的范围,坐标原点不是0,使用yticks函数可以设置想要的坐标范围。同理xticks可以用于设置x轴坐标的范围。
grid(): 用于设置图表中的网格线,使用linestyle参数设置网格线的样式,常用的样式有下表中的几种,plot()函数中也可以用linestyle参数设置折线图的样式。使用alpha参数设置网格线的透明度。
xlabel(): 用于设置x轴的标签,说明x轴坐标的含义,第一个参数传入需要设置的标签值,后面可以通过其他参数设置显示的效果,如字体大小等。ylabel同理。
title(): 用于设置折线图的标题,说明这张折线图展示的数据。用法同xlabel。
五、matplotlib绘制多条折线图
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
plt.plot(game, scores, c='red', label="得分")
plt.plot(game, rebounds, c='green', linestyle='--', label="篮板")
plt.plot(game, assists, c='blue', linestyle='-.', label="助攻")
plt.scatter(game, scores, c='red')
plt.scatter(game, rebounds, c='green')
plt.scatter(game, assists, c='blue')
plt.legend(loc='best')
plt.yticks(range(0, 50, 5))
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("数据", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯数据", fontdict={'size': 20})
plt.show()
运行结果:
六、matplotlib绘制多张折线图
import matplotlib.pyplot as plt
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
y_data = [scores, rebounds, assists]
colors = ['red', 'green', 'blue']
line_style = ['-', '--', '-.']
y_labels = ["得分", "篮板", "助攻"]
for i in range(3):
axs[i].plot(game, y_data[i], c=colors[i], label=y_labels[i], linestyle=line_style[i])
axs[i].scatter(game, y_data[i], c=colors[i])
axs[i].legend(loc='best')
axs[i].set_yticks(range(0, 50, 5))
axs[i].grid(True, linestyle='--', alpha=0.5)
axs[i].set_xlabel("赛程", fontdict={'size': 16})
axs[i].set_ylabel(y_labels[i], fontdict={'size': 16}, rotation=0)
axs[i].set_title("NBA2020季后赛詹姆斯{}".format(y_labels[i]), fontdict={'size': 20})
fig.autofmt_xdate()
plt.show()
运行结果:
subplots(): 用于在同一张图像中绘制多张图表,通过nrows, ncols两个参数设置图表的张数和排列方式,figsize和dpi同figure()函数。subplots()函数返回两个参数,一个是图像对象fig,一个是可迭代的图表数组axs(类型为numpy中的数组对象)。
每一张图表中的标签、标题、样式、图例等都需要单独设置,为了避免代码过于冗余,可以使用循环。绘制每一张图表时,从axs中取出每一张图表,再调用plot()函数绘图。在设置坐标轴、标签、标题时,使用'set_'开头的方法进行设置,如设置x轴标签用set_xlabel()。
autofmt_xdate(): x轴坐标值自适应倾斜。因为一张图像中有多张图表,x坐标值靠得很近,可能会因重叠造成展示效果差,使用fig对象的autofmt_xdate()方法可以设置自适应倾斜。
以上就是matplotlib实现折线图的简单介绍,更多设置可以参考官网并多作尝试。
最后,小编想说:我是一名python开发工程师,
整理了一套最新的python系统学习教程,
想要这些资料的可以关注私信小编“01”即可(免费分享哦)希望能对你有所帮助
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)