Python matplotlib绘制折线图(超详细)
off999 2024-10-31 14:02 18 浏览 0 评论
Python matplotlib绘制折线图
matplotlib是Python中的一个第三方库。主要用于开发2D图表,以渐进式、交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力。
一、安装matplotlib
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
二、matplotlib图像简介
matplotlib的图像分为三层,容器层、辅助显示层和图像层。
1. 容器层主要由Canvas、Figure、Axes组成。
Canvas位于图像的最底层,充当画布的作用。
Figure位于Canvas之上,指画布上的一整张图像。
Axes位于Figure之上,指Figure中的单个图表,一个Figure中可以有一个或多个Axes,即一张图像中可以有一个或多个图表。
2. 辅助显示层是单个图表(Axes)中用来提供辅助信息的层。
辅助显示层主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。
辅助层可使图像显示更加直观,提高可读性。
3. 图像层指Axes内通过plot、scatter、bar、histogram、pie等函数绘制出的图形。
三、matplotlib绘制折线图
# coding=utf-8
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores)
plt.show()
运行结果:
figure(): 创建图像并设置图像的大小等属性,返回一张图像,可以传入很多参数,常用参数有两个。figsize参数传入一个元组(width, height),设置图像的大小。dpi传入一个整数值,设置图像的清晰度。
plot(): matplotlib中绘制折线图的函数。可以传入很多参数,一般传入两个列表,分别是折线图中的x值和y值。上面的例子中用了NBA2020年季后赛James的得分数据。
show(): 展示图像。
在上面的图表中,x坐标值中有中文,首次使用matplotlib绘图时中文无法正常显示。要解决中文显示问题,需要下载安装SimHei字体或直接搜索SimHei然后找一个正确的网站下载。下载完成后,在Windows下直接解压双击安装。安装完成后删除~/.matplotlib中的缓存文件,并创建配置文件matplotlibrc,将matplotlibrc中的内容设置为如下内容。
font.family : sans-serif
font.sans-serif : SimHei
axes.unicode_minus : False
操作命令如下截图,完成后图像中就可以正常显示中文了。
使用上面的代码,已经实现了简单的折线图,但展示的效果很差,所以需要进行优化,使图像展示得更好。
四、matplotlib优化折线图
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores, c='red')
plt.scatter(game, scores, c='red')
y_ticks = range(50)
plt.yticks(y_ticks[::5])
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("得分", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯得分", fontdict={'size': 20})
plt.show()
运行结果:
在使用plot()函数绘图时,可以通过c='颜色'来设置折线图的颜色。
scatter(): 绘制散点图。折线图是用直线连接相邻的两个点形成的,但是连成折线后点的显示不明显。scatter可以单独对点进行设置,展示得更明显。
yticks(): 用于设置y轴坐标的范围,传入一个可迭代对象(如range()函数)。最开始绘制的折线图中,图像的y轴坐标范围是数据的范围,坐标原点不是0,使用yticks函数可以设置想要的坐标范围。同理xticks可以用于设置x轴坐标的范围。
grid(): 用于设置图表中的网格线,使用linestyle参数设置网格线的样式,常用的样式有下表中的几种,plot()函数中也可以用linestyle参数设置折线图的样式。使用alpha参数设置网格线的透明度。
xlabel(): 用于设置x轴的标签,说明x轴坐标的含义,第一个参数传入需要设置的标签值,后面可以通过其他参数设置显示的效果,如字体大小等。ylabel同理。
title(): 用于设置折线图的标题,说明这张折线图展示的数据。用法同xlabel。
五、matplotlib绘制多条折线图
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
plt.plot(game, scores, c='red', label="得分")
plt.plot(game, rebounds, c='green', linestyle='--', label="篮板")
plt.plot(game, assists, c='blue', linestyle='-.', label="助攻")
plt.scatter(game, scores, c='red')
plt.scatter(game, rebounds, c='green')
plt.scatter(game, assists, c='blue')
plt.legend(loc='best')
plt.yticks(range(0, 50, 5))
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("数据", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯数据", fontdict={'size': 20})
plt.show()
运行结果:
六、matplotlib绘制多张折线图
import matplotlib.pyplot as plt
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
'3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
y_data = [scores, rebounds, assists]
colors = ['red', 'green', 'blue']
line_style = ['-', '--', '-.']
y_labels = ["得分", "篮板", "助攻"]
for i in range(3):
axs[i].plot(game, y_data[i], c=colors[i], label=y_labels[i], linestyle=line_style[i])
axs[i].scatter(game, y_data[i], c=colors[i])
axs[i].legend(loc='best')
axs[i].set_yticks(range(0, 50, 5))
axs[i].grid(True, linestyle='--', alpha=0.5)
axs[i].set_xlabel("赛程", fontdict={'size': 16})
axs[i].set_ylabel(y_labels[i], fontdict={'size': 16}, rotation=0)
axs[i].set_title("NBA2020季后赛詹姆斯{}".format(y_labels[i]), fontdict={'size': 20})
fig.autofmt_xdate()
plt.show()
运行结果:
subplots(): 用于在同一张图像中绘制多张图表,通过nrows, ncols两个参数设置图表的张数和排列方式,figsize和dpi同figure()函数。subplots()函数返回两个参数,一个是图像对象fig,一个是可迭代的图表数组axs(类型为numpy中的数组对象)。
每一张图表中的标签、标题、样式、图例等都需要单独设置,为了避免代码过于冗余,可以使用循环。绘制每一张图表时,从axs中取出每一张图表,再调用plot()函数绘图。在设置坐标轴、标签、标题时,使用'set_'开头的方法进行设置,如设置x轴标签用set_xlabel()。
autofmt_xdate(): x轴坐标值自适应倾斜。因为一张图像中有多张图表,x坐标值靠得很近,可能会因重叠造成展示效果差,使用fig对象的autofmt_xdate()方法可以设置自适应倾斜。
以上就是matplotlib实现折线图的简单介绍,更多设置可以参考官网并多作尝试。
最后,小编想说:我是一名python开发工程师,
整理了一套最新的python系统学习教程,
想要这些资料的可以关注私信小编“01”即可(免费分享哦)希望能对你有所帮助
相关推荐
- 推荐一款Python的GUI可视化工具(python 可视化工具)
-
在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...
- 教你用Python绘制谷歌浏览器的3种图标
-
前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....
- 小白学Python笔记:第二章 Python安装
-
Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...
- Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字
-
Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...
- 一文吃透Python虚拟环境(python虚拟环境安装和配置)
-
摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...
- 小白也可以玩的Python爬虫库,收藏一下
-
最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...
- python环境安装+配置教程(python安装后怎么配置环境变量)
-
安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...
- colorama,一个超好用的 Python 库!
-
大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...
- python制作仪表盘图(python绘制仪表盘)
-
今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...
- 总结90条写Python程序的建议(python写作)
-
1.首先 建议1、理解Pythonic概念—-详见Python中的《Python之禅》 建议2、编写Pythonic代码 (1)避免不规范代码,比如只用大小写区分变量、使用容易...
- [oeasy]python0137_相加运算_python之禅_import_this_显式转化
-
变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...
- Python入门学习记录之一:变量(python中变量的规则)
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- 掌握Python的"魔法":特殊方法与属性完全指南
-
在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...
- 11个Python技巧 不Pythonic 实用大于纯粹
-
虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...
- Python 从入门到精通 第三课 诗意的Python之禅
-
导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)