百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

文科生自学Python-用Plotly绘制折线图

off999 2024-10-31 14:02 30 浏览 0 评论

--人生不是赛场,梦想不容退场,学习编程成就更好的自己--

Python语言简洁生动,特别适合文科生学习入门IT世界,用几十行代码就能够做一个完整的爬虫脚本,开发效率杠杠的!短时间内即可解决工作和学习中碰到的各种棘手问题。(本人外语专业毕业,机缘巧合爱上编程,自学道路曲曲折折,痛并快乐!)在这里总结一下自学Python遇到的难点和重点,分享码过的代码和要点总结,希望能够给初学者一点启示和鼓励,同时愿意结交更多大神交流有助提升自己的水平。

今天分享如何使用Plotly绘制一种大家熟知的图表--折线图一般来讲折线图描述随着时间推移相关维度数值的变化情况,例如:X轴为时间轴,Y轴为收入数值,接下来还以Plotly内置的世界人口数据集为案例进行演示:

1.调取欧洲几个典型国家作为数据集来绘制折线图:

2.使用line函数进行制图如下:

作图需要注意X轴年份数据尽量文本化(Year方便显示),看到几行代码就能轻松搞定,但是折线图的颜色和风格还是差点意思,如何能够私人定制呢?接下来看看另一种画折线图的方法:

2.创建go.Figure画折线图:

作图之前先对数据进行预处理,把每个国家数据单独提取成各自独立的数据集合,如下:

通过go.Figure来创建底层画布,其方法有点像画油画,一层一层把想要的数据放上去,然后再对标题和背景颜色等进行渲染完成即可,如下:

看成品如下:

也可以调整一下背景颜色,如下:

看成品如下:

是不是有点专业的味道了?可见go.Figure方法真是奇妙哇,小伙伴们赶紧去官网上查查资料动手试一下吧。

代码汇总如下:

#import plotly to get the datasets
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import plotly.offline as py
import plotly_express as px

#Get a dataset of dedicated countries
df = px.data.gapminder().query("country == ['Germany','France','Italy','Spain']")
df["life"] = df["lifeExp"].astype(int)
df["pop-Million"] = (df["pop"]/1000000).astype(int) #Get pop 100W /人口数量以百万单位来显示
df["gdpPercap-Thousand"] = (df["gdpPercap"]/1000).astype(float) #Get gdpPercap as Tousand /人均GDP以千元单位显示
df["Year"] = df["year"].astype(str) #Convert year as int into string
display(df.head())

fig = px.line(df, x="Year", y="pop-Million",color="country")
fig.update_layout(title="欧洲主要几个国家人口变化",xaxis_title="年份",yaxis_title='人口数量-百万')
fig.show()

#get datasets seperately
df_Germany = df[df["country"]=="Germany"]
df_France = df[df["country"]=="France"]
df_Italy = df[df["country"]=="Italy"]
df_Spain = df[df["country"]=="Spain"]
display(df_Germany.head())

#get the lines for countries one by one
fig = go.Figure()
fig.add_trace(go.Scatter(x=df_Germany["Year"], y=df_Germany["pop-Million"],name='Pop Change of Germany',\
                         line=dict(color='firebrick', width=4))) #油画第一层-德国数据
fig.add_trace(go.Scatter(x=df_France["Year"], y=df_France["pop-Million"],name='Pop Change of France',\
                         line=dict(color='royalblue', width=4,dash="dashdot"))) #油画第二层-法国数据
fig.add_trace(go.Scatter(x=df_Italy["Year"], y=df_Italy["pop-Million"],name='Pop Change of Italy',\
                         line=dict(color='firebrick', width=4,dash="dash"))) #油画第三层-意大利数据
fig.add_trace(go.Scatter(x=df_Spain["Year"], y=df_Spain["pop-Million"],name='Pop Change of Spain',\
                         line=dict(color='royalblue', width=4, dash='dot'))) #油画第四层-西班牙数据
fig.update_layout(title="不同欧洲国家人口变化",xaxis_title="年份",yaxis_title='人口数量',showlegend=True) #渲染标题有和备注等
fig.show()

#get datasets seperately
df_Germany = df[df["country"]=="Germany"]
df_France = df[df["country"]=="France"]
df_Italy = df[df["country"]=="Italy"]
df_Spain = df[df["country"]=="Spain"]
#get the lines for countries one by one
fig = go.Figure()
fig.add_trace(go.Scatter(x=df_Germany["Year"], y=df_Germany["pop-Million"],name='Pop Change of Germany',\
                         line=dict(color='firebrick', width=4)))
fig.add_trace(go.Scatter(x=df_France["Year"], y=df_France["pop-Million"],name='Pop Change of France',\
                         line=dict(color='royalblue', width=4,dash="dashdot")))
fig.add_trace(go.Scatter(x=df_Italy["Year"], y=df_Italy["pop-Million"],name='Pop Change of Italy',\
                         line=dict(color='firebrick', width=4,dash="dash")))
fig.add_trace(go.Scatter(x=df_Spain["Year"], y=df_Spain["pop-Million"],name='Pop Change of Spain',\
                         line=dict(color='royalblue', width=4, dash='dot')))
fig.update_layout(title="不同欧洲国家人口变化",xaxis_title="年份",yaxis_title='人口数量')
fig.update_layout(showlegend=True,plot_bgcolor="white")
fig.show()

END

我为人人,人人为我!!欢迎大家关注,点赞和转发!!!

~~人生不是赛场,梦想不容退场~~不断努力学习蜕变出一个更好的自己,不断分享学习路上的收获和感悟帮助他人成就自己!!!

相关推荐

让 Python 代码飙升330倍:从入门到精通的四种性能优化实践

花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...

7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制

“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...

Python3.14:终于摆脱了GIL的限制

前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...

Python Web开发实战:3小时从零搭建个人博客

一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...

图解Python编程:从入门到精通系列教程(附全套速查表)

引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...

Python 并发编程实战:从基础到实战应用

并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...

吴恩达亲自授课,适合初学者的Python编程课程上线

吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...

Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件

在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...

Python turtle模块编程实践教程

一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...

Python 中的asyncio 编程入门示例-1

Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...

30天学会Python,开启编程新世界

在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...

Python基础知识(IO编程)

1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...

Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!

Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...

一文带你了解Python Socket 编程

大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...

Python-面向对象编程入门

面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...

取消回复欢迎 发表评论: