百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

10个案例分享几个Python可视化小技巧,助你绘制高质量图表

off999 2024-10-31 14:04 19 浏览 0 评论

作者:俊欣

来源:关于数据分析与可视化

一般在Python当中,我们用于绘制图表的模块最基础的可能就是matplotlib了,今天小编分享几个用该模块进行可视化制作的技巧,帮助你绘制出更加高质量的图表。

同时本篇文章的第二部分是用Python来制作可视化动图,让你更加清楚的了解到数据的走势

数据集的导入

最开始,我们先导入数据集,并且导入我们需要用到的库

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid")

# 读取数据
aapl = pd.read_csv("AAPL.csv")
print(aapl.head())

output

        Date        Open        High  ...       Close   Adj Close    Volume
0  2021-9-30  143.660004  144.380005  ...  141.500000  141.293793  88934200
1  2021-10-1  141.899994  142.919998  ...  142.649994  142.442108  94639600
2  2021-10-4  141.759995  142.210007  ...  139.139999  138.937225  98322000
3  2021-10-5  139.490005  142.240005  ...  141.110001  140.904358  80861100
4  2021-10-6  139.470001  142.149994  ...  142.000000  141.793060  83221100

简单的折线图

上面的代码我们用到的是“苹果”公司2021年的9月31日到12月31日的股价走势,我们先来简单的画一张折线图,代码如下

plt.figure(figsize=(12,6))
plt.plot(aapl["Close"])

output

上面的折线图看着就有点单调和简单,我们就单单只可以看到数据的走势,除此之外就没有别的收获,我们甚至都不知道这条折线所表示的意义,因为接下来我们来进行一系列的优化

添加标题以及设置Y轴标签

第一步我们先给图表添加标题以及给X轴、Y轴设置标签,代码如下

plt.figure(figsize=(12,6))
plt.plot(aapl["Close"])

# 添加标题和给Y轴打上标记
plt.ylabel("Closing Price", fontsize=15)  ## 收盘价
plt.title("Apple Stock Price", fontsize=18) ## 标题:苹果公司股价

output

再添加一个Y轴

现有的这个Y轴代表的是收盘价,要是我们还想再往图表当中添加另外一列的数据,该数据的数值范围和已有的收盘价的数值范围不同,如果放在一起,绘制出来的图表可不好看,如下

plt.figure(figsize=(12,6))
plt.plot(aapl["Close"])

# 第二根折线图
plt.plot(aapl["Volume"])

# Y轴的名称和标记
plt.ylabel("Closing Price", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)

output

可以看到我们代表股价的那条蓝线变成了水平的直线,由于它的数值范围和“Volume”这一列当中的数据,数值范围差了不少,因此我还需要一个Y轴,来代表“Volume”这一列数据的走势,代码如下

fig, ax1 = plt.subplots(figsize=(12,6))

# 第二个Y轴的标记
ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r")

# 添加标题和Y轴的名称,有两个Y轴
ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)

output

上面的代码我们通过twinx()方法再来新建一个Y轴对象,然后对应的数据是Volume这一列当中的数据,而给Y轴标记的方式也从上面的plt.ylabel()变成了ax.set_ylabel()

添加图例

接下来给绘制好的图表添加图例,不同的折线代表的是不同的数据,代码如下

fig, ax1 = plt.subplots(figsize=(12,6))
# 第二个Y轴
ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r")
# 设置Y轴标签和标题
ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
# 添加图例
ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)

output

plt.legend()方法当中的loc参数代表的是图例的位置,2代表的是左上方,具体的大家可以通过下面的链接来查阅

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

将网格线去除掉

有时候我们感觉图表当中的网格线有点碍眼,就可以将其去掉,代码如下

fig, ax1 = plt.subplots(figsize=(12,6))
# 第二个Y轴
ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r")
# 设置Y轴标签和标题
ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
# 添加图例
ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
# 去掉网格线
ax1.grid(False)
ax2.grid(False)

output

这样出来的图表是不是看着顺眼多了呢?!

在图表当中添加一些文字

有时候我们也想在图表当中添加一些文字,可以是注释也可以是一些赞美性的语言,可以通过代码来实现,如下

fig, ax1 = plt.subplots(figsize=(12,6))
# 第二个Y轴
ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r")
# 设置Y轴标签和标题
ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
# 添加图例
ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
# 去掉网格线
ax1.grid(False)
ax2.grid(False)

date_string = datetime.strptime("2021-10-31", "%Y-%m-%d")

# 添加文字
ax1.text(
    date_string, ## 代表的是添加的文字的位置
    170, 
    "Nice plot!", ## 添加的文字的内容
    fontsize=18, ## 文字的大小
    color="green" ## 颜色
)

output

图表当中的中文显示

在上面的图表当中,无论是标题还是注释或者是图例,都是英文的,我们需要往里面添加中文的内容时候,还需要添加下面的代码

plt.rcParams['font.sans-serif'] = ['SimHei']

fig, ax1 = plt.subplots(figsize=(12,6))
# 第二个Y轴
ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r")
# 设置Y轴标签和标题
ax1.set_ylabel("收盘价", fontsize=15)
ax2.set_ylabel("成交量", fontsize=15)
plt.title("苹果公司股价走势", fontsize=18)
# 添加图例
ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
# 去掉网格线
ax1.grid(False)
ax2.grid(False)
# 添加文字
ax1.text(
    date_string,
    170, 
    "画的漂亮", 
    fontsize=18, 
    color="green"
)

output

这样全局的字体都被设置成了“黑体”,文本内容都是用中文来显示

X轴/Y轴上刻度字体的大小

我们还可以给X轴/Y轴添加边框,以及边框的粗细也可以通过代码来进行调整,如下

plt.rcParams["axes.edgecolor"] = "black"
plt.rcParams["axes.linewidth"] = 2

同时我们还可以对X轴以及Y轴上面的刻度,它们的字体大小进行设置,代码如下

# tick size
ax1.tick_params(axis='both', which='major', labelsize=13)
ax2.tick_params(axis='both', which='major', labelsize=13)

output

出来的图表是不是比一开始的要好很多呢?

制作动图

接下来给大家介绍一个制作动图的Python库,bar_chart_race,只需要简单的几行代码,就可以制作出随着时间变化的直方图动图,代码如下

import bar_chart_race as bcr
import pandas as pd
# 生成GIF图像
df = pd.read_csv('covid19_tutorial.csv', index_col=index_col,
                 parse_dates=parse_dates)
bcr.bar_chart_race(df, 'covid19_tutorial_horiz.gif')

output

相关推荐

推荐一款Python的GUI可视化工具(python 可视化工具)

在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...

教你用Python绘制谷歌浏览器的3种图标

前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....

小白学Python笔记:第二章 Python安装

Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...

一文吃透Python虚拟环境(python虚拟环境安装和配置)

摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...

小白也可以玩的Python爬虫库,收藏一下

最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...

python环境安装+配置教程(python安装后怎么配置环境变量)

安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...

colorama,一个超好用的 Python 库!

大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...

python制作仪表盘图(python绘制仪表盘)

今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...

总结90条写Python程序的建议(python写作)

  1.首先  建议1、理解Pythonic概念—-详见Python中的《Python之禅》  建议2、编写Pythonic代码  (1)避免不规范代码,比如只用大小写区分变量、使用容易...

[oeasy]python0137_相加运算_python之禅_import_this_显式转化

变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...

Python入门学习记录之一:变量(python中变量的规则)

写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...

掌握Python的"魔法":特殊方法与属性完全指南

在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...

11个Python技巧 不Pythonic 实用大于纯粹

虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...

Python 从入门到精通 第三课 诗意的Python之禅

导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...

取消回复欢迎 发表评论: