百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python | 使用数字与字符串的技巧

off999 2024-11-01 12:52 21 浏览 0 评论

序言

数字是几乎所有编程语言里最基本的数据类型,它是我们通过代码连接现实世界的基础。在 Python 里有三种数值类型:整型(int)、浮点型(float)和复数(complex)。绝大多数情况下,我们只需要和前两种打交道。

整型在 Python 中比较让人省心,因为它不区分有无符号并且永不溢出。但浮点型仍和绝大多数其他编程语言一样,依然有着精度问题,经常让很多刚进入编程世界大门的新人们感到困惑:"Why Are Floating Point Numbers Inaccurate?"。

相比数字,Python 里的字符串要复杂的多。要掌握它,你得先弄清楚 bytes 和 str 的区别。如果更不巧,你还是位 Python2 用户的话,光 unicode 和字符编码问题就够你喝上好几壶了 (赶快迁移到 Python3 吧,就在今天!)。

不过,上面提到的这些都不是这篇文章的主题,如果感兴趣,你可以在网上找到成堆的相关资料。在这篇文章里,我们将讨论一些 更细微、更不常见 的编程实践。来帮助你写出更好的 Python 代码。

最佳实践

1. 少写数字字面量

“数字字面量(integer literal)” 是指那些直接出现在代码里的数字。它们分布在代码里的各个角落,比如代码 del users[0] 里的 0 就是一个数字字面量。它们简单、实用,每个人每天都在写。但是,当你的代码里不断重复出现一些特定字面量时,你的“代码质量告警灯”就应该亮起黄灯 了。

举个例子,假如你刚加入一家心仪已久的新公司,同事转交给你的项目里有这么一个函数:

def mark_trip_as_featured(trip):
    """将某个旅程添加到推荐栏目
    """
    if trip.source == 11:
        do_some_thing(trip)
    elif trip.source == 12:
        do_some_other_thing(trip)
    ... ...
    return

这个函数做了什么事?你努力想搞懂它的意思,不过 trip.source == 11 是什么情况?那 == 12 呢?这两行代码很简单,没有用到任何魔法特性。但初次接触代码的你可能需要花费一整个下午,才能弄懂它们的含义。

问题就出在那几个数字字面量上。 最初写下这个函数的人,可能是在公司成立之初加入的那位元老程序员。而他对那几个数字的含义非常清楚。但如果你是一位刚接触这段代码的新人,就完全是另外一码事了。

使用 enum 枚举类型改善代码

那么,怎么改善这段代码?最直接的方式,就是为这两个条件分支添加注释。不过在这里,“添加注释”显然不是提升代码可读性的最佳办法*(其实在绝大多数其他情况下都不是)*。我们需要用有意义的名称来代替这些字面量,而枚举类型(enum)用在这里最合适不过了。

enum 是 Python 自 3.4 版本引入的内置模块,如果你使用的是更早的版本,可以通过 pip install enum34 来安装它。下面是使用 enum 的样例代码:

# -*- coding: utf-8 -*-
from enum import IntEnum

class TripSource(IntEnum):
    FROM_WEBSITE = 11
    FROM_IOS_CLIENT = 12


def mark_trip_as_featured(trip):
    if trip.source == TripSource.FROM_WEBSITE:
        do_some_thing(trip)
    elif trip.source == TripSource.FROM_IOS_CLIENT:
        do_some_other_thing(trip)
    ... ...
    return

将重复出现的数字字面量定义成枚举类型,不光可以改善代码的可读性,代码出现 Bug 的几率也会降低。

试想一下,如果你在某个分支判断时将 11 错打成了 111 会怎么样?我们时常会犯这种错,而这类错误在早期特别难被发现。将这些数字字面量全部放入枚举类型中可以比较好的规避这类问题。类似的,将字符串字面量改写成枚举也可以获得同样的好处。

使用枚举类型代替字面量的好处:

  • 提升代码可读性:所有人都不需要记忆某个神奇的数字代表什么
  • 提升代码正确性:减少打错数字或字母产生 bug 的可能性

当然,你完全没有必要把代码里的所有字面量都改成枚举类型。 代码里出现的字面量,只要在它所处的上下文里面容易理解,就可以使用它。 比如那些经常作为数字下标出现的 0 和 -1 就完全没有问题,因为所有人都知道它们的意思。

2. 别在裸字符串处理上走太远

什么是“裸字符串处理”?在这篇文章里,它指只使用基本的加减乘除和循环、配合内置函数/方法来操作字符串,获得我们需要的结果。

所有人都写过这样的代码。有时候我们需要拼接一大段发给用户的告警信息,有时我们需要构造一大段发送给数据库的 SQL 查询语句,就像下面这样:

def fetch_users(conn, min_level=None, gender=None, has_membership=False, sort_field="created"):
    """获取用户列表
   
    :param int min_level: 要求的最低用户级别,默认为所有级别
    :param int gender: 筛选用户性别,默认为所有性别
    :param int has_membership: 筛选所有会员/非会员用户,默认非会员
    :param str sort_field: 排序字段,默认为按 created "用户创建日期"
    :returns: 列表:[(User ID, User Name), ...]
    """
    # 一种古老的 SQL 拼接技巧,使用 "WHERE 1=1" 来简化字符串拼接操作
    # 区分查询 params 来避免 SQL 注入问题
    statement = "SELECT id, name FROM users WHERE 1=1"
    params = []
    if min_level is not None:
        statement += " AND level >= ?"
        params.append(min_level)
    if gender is not None:
        statement += " AND gender >= ?"
        params.append(gender)
    if has_membership:
        statement += " AND has_membership == true"
    else:
        statement += " AND has_membership == false"
    
    statement += " ORDER BY ?"
    params.append(sort_field)
    return list(conn.execute(statement, params))

我们之所以用这种方式拼接出需要的字符串 - 在这里是 SQL 语句 - 是因为这样做简单、直接,符合直觉。但是这样做最大的问题在于:随着函数逻辑变得更复杂,这段拼接代码会变得容易出错、难以扩展。事实上,上面这段 Demo 代码也只是仅仅做到看上去没有明显的 bug 而已 (谁知道有没有其他隐藏问题)。

其实,对于 SQL 语句这种结构化、有规则的字符串,用对象化的方式构建和编辑它才是更好的做法。下面这段代码用 SQLAlchemy 模块完成了同样的功能:

def fetch_users_v2(conn, min_level=None, gender=None, has_membership=False, sort_field="created"):
    """获取用户列表
    """
    query = select([users.c.id, users.c.name])
    if min_level is not None:
        query = query.where(users.c.level >= min_level)
    if gender is not None:
        query = query.where(users.c.gender == gender)
    query = query.where(users.c.has_membership == has_membership).order_by(users.c[sort_field])
    return list(conn.execute(query))

上面的 fetch_users_v2 函数更短也更好维护,而且根本不需要担心 SQL 注入问题。所以,当你的代码中出现复杂的裸字符串处理逻辑时,请试着用下面的方式替代它:

Q: 目标/源字符串是结构化的,遵循某种格式吗?

  • 是:找找是否已经有开源的对象化模块操作它们,或是自己写一个SQL:SQLAlchemyXML:lxmlJSON、YAML ...
  • 否:尝试使用模板引擎而不是复杂字符串处理逻辑来达到目的Jinja2MakoMustache

3. 不必预计算字面量表达式

我们的代码里偶尔会出现一些比较复杂的数字,就像下面这样:

def f1(delta_seconds):
    # 如果时间已经过去了超过 11 天,不做任何事
    if delta_seconds > 950400:
        return 
    ...

话说在前头,上面的代码没有任何毛病。

首先,我们在小本子(当然,和我一样的聪明人会用 IPython)上算了算:11天一共包含多少秒?。然后再把结果 950400 这个神奇的数字填进我们的代码里,最后心满意足的在上面补上一行注释:告诉所有人这个神奇的数字是怎么来的。

我想问的是:“为什么我们不直接把代码写成 if delta_seconds < 11 * 24 * 3600: 呢?”

“性能”,答案一定会是“性能”。我们都知道 Python 是一门~~(速度欠佳的)~~解释型语言,所以预先计算出 950400 正是因为我们不想让每次对函数 f1 的调用都带上这部分的计算开销。不过事实是:即使我们把代码改成 if delta_seconds < 11 * 24 * 3600:,函数也不会多出任何额外的开销。

Python 代码在执行时会被解释器编译成字节码,而真相就藏在字节码里。让我们用 dis 模块看看:

def f1(delta_seconds):
    if delta_seconds < 11 * 24 * 3600:
        return

import dis
dis.dis(f1)

# dis 执行结果
  5           0 LOAD_FAST                0 (delta_seconds)
              2 LOAD_CONST               1 (950400)
              4 COMPARE_OP               0 (<)
              6 POP_JUMP_IF_FALSE       12

  6           8 LOAD_CONST               0 (None)
             10 RETURN_VALUE
        >>   12 LOAD_CONST               0 (None)
             14 RETURN_VALUE


看见上面的 2 LOAD_CONST 1 (950400) 了吗?这表示 Python 解释器在将源码编译成成字节码时,会计算 11 * 24 * 3600 这段表达式,并用 950400 替换它。

所以,当我们的代码中需要出现复杂计算的字面量时,请保留整个算式吧。它对性能没有任何影响,而且会增加代码的可读性。

Hint:Python 解释器除了会预计算数值字面量表达式以外,还会对字符串、列表做类似的操作。一切都是为了性能。谁让你们老吐槽 Python 慢呢?

实用技巧

1. 布尔值其实也是“数字”

Python 里的两个布尔值 True 和 False 在绝大多数情况下都可以直接等价于 1 和 0 两个整数来使用,就像这样:

>>> True + 1
2
>>> 1 / False
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

那么记住这点有什么用呢?首先,它们可以配合 sum 函数在需要计算总数时简化操作:

>>> l = [1, 2, 4, 5, 7]
>>> sum(i % 2 == 0 for i in l)
2

此外,如果将某个布尔值表达式作为列表的下标使用,可以实现类似三元表达式的目的:

# 类似的三元表达式:"Javascript" if 2 > 1 else "Python"
>>> ["Python", "Javascript"][2 > 1]
'Javascript'

2. 改善超长字符串的可读性

单行代码的长度不宜太长。比如 PEP8 里就建议每行字符数不得超过 79。现实世界里,大部分人遵循的单行最大字符数在 79 到 119 之间。如果只是代码,这样的要求是比较容易达到的,但假设代码里需要出现一段超长的字符串呢?

这时,除了使用斜杠 \ 和加号 + 将长字符串拆分为好几段以外,还有一种更简单的办法:使用括号将长字符串包起来,然后就可以随意折行了:

s = (
    "There is something really bad happened during the process. "
    "Please contact your administrator."
)
print(s)


def main():
    logger.info(
        "There is something really bad happened during the process. "
        "Please contact your administrator."
    )

当多级缩进里出现多行字符串时

日常编码时,还有一种比较麻烦的情况。就是需要在已经有缩进层级的代码里,插入多行字符串字面量。因为多行字符串不能包含当前的缩进空格,所以,我们需要把代码写成这样:

def main():
    if user.is_active:
        message = """Welcome, today's movie list:
- Jaw (1975)
- The Shining (1980)
- Saw (2004)"""

但是这样写会破坏整段代码的缩进视觉效果,显得非常突兀。要改善它有很多种办法,比如我们可以把这段多行字符串作为变量提取到模块的最外层。不过,如果在你的代码逻辑里更适合用字面量的话,你也可以用标准库 textwrap 来解决这个问题:

from textwrap import dedent

def main():
    if user.is_active:
        # dedent 将会缩进掉整段文字最左边的空字符串
        message = dedent("""\
            Welcome, today's movie list:
            - Jaw (1975)
            - The Shining (1980)
            - Saw (2004)""")

大数字也可以变得更加可读

对那些特别大的数字,可以通过在中间添加下划线来提高可读性 (PEP515,需要 Python3.6+)。

比如:

>>> 10_000_000.0  # 以“千”为单位划分数字
10000000.0
>>> 0xCAFE_F00D  # 16进制数字同样有效,4个一组更易读
3405705229
>>> 0b_0011_1111_0100_1110  # 二进制也有效
16206
>>> int('0b_1111_0000', 2)  # 处理字符串的时候也会正确处理下划线
240

3. 别忘了那些 “r” 开头的内建字符串函数

Python 的字符串有着非常多实用的内建方法,最常用的有 .strip()、.split() 等。这些内建方法里的大多数,处理起来的顺序都是从左往右。但是其中也包含了部分以 r 打头的从右至左处理的镜像方法。在处理特定逻辑时,使用它们可以让你事半功倍。

假设我们需要解析一些访问日志,日志格式为:"{user_agent}" {content_length}:

>>> log_line = '"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36" 47632'

如果使用 .split() 将日志拆分为 (user_agent, content_length) ,我们需要这么写:

>>> l = log_line.split()
>>> " ".join(l[:-1]), l[-1]
('"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"', '47632')

但是如果使用 .rsplit() 的话,处理逻辑就更直接了:

>>> log_line.rsplit(None, 1)
['"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"', '47632']

4. 使用“无穷大” float("inf")

如果有人问你:“Python 里什么数字最大/最小?”。你应该怎么回答?有这样的东西存在吗?

答案是:“有的,它们就是:float("inf") 和 float("-inf")”。它们俩分别对应着数学世界里的正负无穷大。当它们和任意数值进行比较时,满足这样的规律:float("-inf") < 任意数值 < float("inf")。

因为它们有着这样的特点,我们可以在某些场景用上它们:

# A. 根据年龄升序排序,没有提供年龄放在最后边
>>> users = {"tom": 19, "jenny": 13, "jack": None, "andrew": 43}
>>> sorted(users.keys(), key=lambda user: users.get(user) or float('inf'))
['jenny', 'tom', 'andrew', 'jack']

# B. 作为循环初始值,简化第一次判断逻辑
>>> max_num = float('-inf')
>>> # 找到列表中最大的数字
>>> for i in [23, 71, 3, 21, 8]:
...:    if i > max_num:
...:         max_num = i
...:
>>> max_num
71

常见误区

1. “value += 1” 并非线程安全

当我们编写多线程程序时,经常需要处理复杂的共享变量和竞态等问题。

“线程安全”,通常被用来形容 **某个行为或者某类数据结构,可以在多线程环境下被共享使用并产生预期内的结果。**一个典型的满足“线程安全”的模块就是 queue 队列模块。

而我们常做的 value += 1 操作,很容易被想当然的认为是“线程安全”的。因为它看上去就是一个原子操作 (指一个最小的操作单位,执行途中不会插入任何其他操作)。然而真相并非如此,虽然从 Python 代码上来看,value += 1 这个操作像是原子的。但它最终被 Python 解释器执行的时候,早就不再 “原子” 了。

我们可以用前面提到的 dis 模块来验证一下:

def incr(value):
    value += 1


# 使用 dis 模块查看字节码
import dis

dis.dis(incr)
      0 LOAD_FAST                0 (value)
      2 LOAD_CONST               1 (1)
      4 INPLACE_ADD
      6 STORE_FAST               0 (value)
      8 LOAD_CONST               0 (None)
     10 RETURN_VALUE

在上面输出结果中,可以看到这个简单的累加语句,会被编译成包括取值和保存在内的好几个不同步骤,而在多线程环境下,任意一个其他线程都有可能在其中某个步骤切入进来,阻碍你获得正确的结果。

因此,请不要凭借自己的直觉来判断某个行为是否“线程安全”,不然等程序在高并发环境下出现奇怪的 bug 时,你将为自己的直觉付出惨痛的代价。

2. 字符串拼接并不慢

我刚接触 Python 不久时,在某个网站看到这样一个说法: “Python 里的字符串是不可变的,所以每一次对字符串进行拼接都会生成一个新对象,导致新的内存分配,效率非常低”。 我对此深信不疑。

所以,一直以来,我尽量都在避免使用 += 的方式去拼接字符串,而是用 "".join(str_list) 之类的方式来替代。

但是,在某个偶然的机会下,我对 Python 的字符串拼接做了一次简单的性能测试后发现: Python 的字符串拼接根本就不慢! 在查阅了一些资料后,最终发现了真相。

Python 的字符串拼接在 2.2 以及之前的版本确实很慢,和我最早看到的说法行为一致。但是因为这个操作太常用了,所以之后的版本里专门针对它做了性能优化。大大提升了执行效率。

如今使用 += 的方式来拼接字符串,效率已经非常接近 "".join(str_list) 了。所以,该拼接时就拼接吧,不必担心任何性能问题。

结语

让我们最后再总结一下要点:

  • 编写代码时,请考虑阅读者的感受,不要出现太多神奇的字面量
  • 当操作结构化字符串时,使用对象化模块比直接处理更有优势
  • dis 模块非常有用,请多多使用它验证你的猜测
  • 多线程环境下的编码非常复杂,要足够谨慎,不要相信自己的直觉
  • Python 语言的更新非常快,不要被别人的经验所左右

相关推荐

Linux 网络协议栈_linux网络协议栈

前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...

揭秘 BPF map 前生今世_bpfdm

1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...

教你简单 提取fmpeg 视频,音频,字幕 方法

ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...

Linux内核原理到代码详解《内核视频教程》

Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...

Linux C Socket UDP编程详解及实例分享

1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...

libevent源码分析之bufferevent使用详解

libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...

一次解决Linux内核内存泄漏实战全过程

什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...

彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏

作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...

linux网络编程常见API详解_linux网络编程视频教程

Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...

Linux下C++访问web—使用libcurl库调用http接口发送解析json数据

一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...

平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道

在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...

谈谈分布式文件系统下的本地缓存_什么是分布式文件存储

在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...

进程间通信之信号量semaphore--linux内核剖析

什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...

Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门

一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...

30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南

30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...

取消回复欢迎 发表评论: