Python NumPy库的安装和使用(pycharm numpy库安装)
off999 2024-09-18 22:30 24 浏览 0 评论
NumPy 就是一个数学运算的库,使用 C 语言实现的,所以运算速度非常快。该模块也不是 Python 自带的,需要自行安装。
可以使用 PIP 进行安装,命令如下:
pip install numpy
使用该模块之前需要将其引入,常用的方法是:
import numpy as np
这样以后就可以使用 np 来表示该模块了。
NumPy 最常见的数据结构就是 ndarray,ndarray 表示 N-dimentioanl Array,就是多维数组的意思。本节也从这里开始介绍 NumPy。
ndarray的构造
可以使用多种方式来构建多维数组,最常见的是使用列表来构建多维数组。下面的例子便使用一维列表构建了一个一维数组。
>>> import numpy as np
>>> nda1 = np.array([1, 2, 3]) # 使用一维列表来作为输入
>>> nda1
array([1, 2, 3])6 >>> type(nda1)
<class 'numpy.ndarray'>
如果希望构建二维数组,可以使用下面的方法:
>>> input_list = [
... [1, 2, 3],
... [4, 5, 6]
... ]
>>> nda2 = np.array(input_list)
>>> nda2
array([[1, 2, 3], # 查看值
[4, 5, 6]])
>>> type(nda2) # 查看类型
<class 'numpy.ndarray'>
也可以指定一些特征值,让 NumPy 自动产生相关的数组。例如指定维度,让其产生所有元素都为正常 0 的数组,代码如下:
>>> np.zeros(5) # 5个元素的一维数组
array([0., 0., 0., 0., 0.])
>>> np.zeros((5, 2)) # 二维数组,5行,2列
array([[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]])
也可以指定维度,让其产生所有元素值都为 1 的数组,代码如下:
>>> np.ones((5, 2)) # 二维数组,5行,2列,所有元素都为1
array([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]])
>>> np.ones(5) # 一维数组,5个元素
array([1., 1., 1., 1., 1.])
还可以让 NumPy 自动产生等差数组,此时需要指定开始值、结束值和步长。代码如下:
>>> np.arange(3,7,2) # 从3开始,直到7,步长为2
array([3, 5])
>>> np.arange(3,7,1) # 从3开始,直到7,步长为1
array([3, 4, 5, 6])
>>> np.arange(7, 3, -1) # 从7开始,直到3,步长为-1
array([7, 6, 5, 4])
>>> np.arange(7, 3, -2) # 从7开始,直到3,步长为-2
array([7, 5])
arange() 函数和 range() 类似,如果仅提供一个值,那么开始值就是 0,步长是 1,代码如下:
>>> np.arange(7)
array([0, 1, 2, 3, 4, 5, 6])
如果提供两个参数,那么步长为 1:
>>> np.arange(2, 5) # 从2开始,直到5,步长为1
array([2, 3, 4])
>>> np.arange(2, 6) # 从2开始,直到6,步长为1
array([2, 3, 4, 5])
另外一个等差数列函数是 linspace(),其指定开始位置和结束位置,但不指定步长,而是指定元素个数。例如从 1 开始,到 5 结束,一共有 8 个数,那么生成的数组如下面所示:
>>> np.linspace(1, 5, 8) # 包括1和5,等分8个点
array([1. , 1.57142857, 2.14285714, 2.71428571, 3.28571429,
3.85714286, 4.42857143, 5])
可以发现元素个数和指定的一致,开始值和结束值也都被包含,而且它们的确是等差数列。
linspace() 函数比较有用,例如要画正弦函数在 0 到 2π 之间的图形,便可以使用该函数在 0 到 2π 之间产生均匀分布的 100 个点,然后使用 matplotlib 将它们画出来。下面是演示的代码:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2*np.pi, 100)
y = [np.sin(e) for e in x]
plt.plot(x, y)
plt.savefig("sindemo1.png")
运行后产生的图片如图 1 所示。
还可以使用 logspace() 函数让 NumPy 自动产生等比数列,此时需要指定开始点和结束点,同时指定点的个数。如果没有提供点的数目,默认是生成 50 个点。
>>> np.logspace(2.0, 3.0, num=4) # 4个点,其实位置是102,结束位置是103
array([ 100. , 215.443469, 464.15888336, 1000.])
下面是一个例子,其演示了 logspace() 的用法和参数 endpoint 的用法。endpoint=True 表示结束值被包含在输出数组中,否则表示不包含在输出数组中。下面是完整的代码:
import matplotlib.pyplot as plt
import numpy as np
N = 10 # 一共10个点
x1 = np.logspace(0.1, 1, N, endpoint=True) # 10被算作是最后一个点
x2 = np.logspace(0.1, 1, N, endpoint=False) # 10不被算作是最后一个点
y = np.zeros(N)
plt.plot(x1, y, 'o')
plt.plot(x2, y + 0.5, 'x')
plt.ylim([-0.5, 1]) # y轴的范围是-0.5到1
plt.savefig("logspace1.png") # 保存图片到文件
运行该脚本,得到的输出图片如图 2 所示。
还可以使用 full() 函数指定维度和一个值,让所有的元素都等于该值。该函数和 ones() 类似,但值是由用户指定的。
>>> np.full((2, 2), np.inf) # 所有元素都是无穷大
array([[inf, inf],
[inf, inf]])
>>> np.full((2, 2), 11) # 所有元素都是11
array([[11, 11],
[11, 11]])
>>> np.full((2, 2), 1.51) # 所有元素都是1.51
array([[1.51, 1.51],
[1.51, 1.51]])
使用 eye() 函数还可以自动生成单位矩阵,就是仅对角线上的值为 1,其他位置上的值都为 0。
>>> np.eye(2) # 2x2的单位矩阵
array([[1., 0.],
[0., 1.]])
>>> np.eye(3) # 3x3的单位矩阵
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
还可以自动产生随机的矩阵,例如可以使用 random.normal() 函数产生一个正态分布的一维矩阵:
>>> mu, sigma = 0, 0.1 # mu是平均值,sigma代表分散程度
>>> s = np.random.normal(mu, sigma, 1000)
>>> s.size # 元素个数为1000
1000
>>> np.mean(s) # 平均值接近0
-0.0011152161285000821
>>> abs(mu - np.mean(s)) < 0.01 # 平均值接近mu=0
True
>>> abs(sigma - np.std(s, ddof=1)) < 0.01 # 分散程度检查
True
可以将生成的数据画出来,使用下面的代码:
import matplotlib.pyplot as plt
import numpy as np
mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)
count, bins, ignored = plt.hist(s, 30, density=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
linewidth=2, color='r')
plt.savefig("rand1.png")
运行该脚本,得到的输出图片文件如图 3 所示。
还可以生成完全随机的矩阵,方法是使用 np.random.rand(外形)函数。例如在下面的例子中,就生成了随机内容组成的指定外形的矩阵。
>>> np.random.rand(3,2) # 3x2的二维矩阵
array([[0.11319256, 0.84668147],
[0.4040353 , 0.70912343],
[0.6511614 , 0.80706271]])
>>> np.random.rand(3,2,2) # 3x2x2的三维矩阵
array([[[0.64851863, 0.3895985 ],
[0.63038544, 0.58402249]],
[[0.39816687, 0.92149102],
[0.07113285, 0.17109903]],
[[0.06713956, 0.39415293],
[0.06125844, 0.71276929]]])
>>> np.random.rand(4) # 一维矩阵
array([0.11918788, 0.91847982, 0.29599804, 0.42242323])
相关推荐
- PYTHON-简易计算器的元素介绍
-
[烟花]了解模板代码的组成importPySimpleGUIassg#1)导入库layout=[[],[],[]]#2)定义布局,确定行数window=sg.Window(...
- 如何使用Python编写一个简单的计算器程序
-
Python是一种简单易学的编程语言,非常适合初学者入门。本文将教您如何使用Python编写一个简单易用的计算器程序,帮助您快速进行基本的数学运算。无需任何高深的数学知识,只需跟随本文的步骤,即可轻松...
- 用Python打造一个简洁美观的桌面计算器
-
最近在学习PythonGUI编程,顺手用Tkinter实现了一个简易桌面计算器,功能虽然不复杂,但非常适合新手练手。如果你正在学习Python,不妨一起来看看这个项目吧!项目背景Tkint...
- 用Python制作一个带图形界面的计算器
-
大家好,今天我要带大家使用Python制作一个具有图形界面的计算器应用程序。这个项目不仅可以帮助你巩固Python编程基础,还可以让你初步体验图形化编程的乐趣。我们将使用Python的tkinter库...
- 用python怎么做最简单的桌面计算器
-
有网友问,用python怎么做一个最简单的桌面计算器。如果只强调简单,在本机运行,不考虑安全性和容错等的话,你能想到的最简单的方案是什么呢?我觉得用tkinter加eval就够简单的。现在开整。首先创...
- 说好的《Think Python 2e》更新呢!
-
编程派微信号:codingpy本周三脱更了,不过发现好多朋友在那天去访问《ThinkPython2e》的在线版,感觉有点对不住呢(实在是没抽出时间来更新)。不过还好本周六的更新可以实现,要不就放一...
- 构建AI系统(三):使用Python设置您的第一个MCP服务器
-
是时候动手实践了!在这一部分中,我们将设置开发环境并创建我们的第一个MCP服务器。如果您从未编写过代码,也不用担心-我们将一步一步来。我们要构建什么还记得第1部分中Maria的咖啡馆吗?我们正在创...
- 函数还是类?90%程序员都踩过的Python认知误区
-
那个深夜,你在调试代码,一行行检查变量类型。突然,一个TypeError错误蹦出来,你盯着那句"strobjectisnotcallable",咖啡杯在桌上留下了一圈深色...
- 《Think Python 2e》中译版更新啦!
-
【回复“python”,送你十本电子书】又到了周三,一周快过去一半了。小编按计划更新《ThinkPython2e》最新版中译。今天更新的是第五章:条件和递归。具体内容请点击阅读原文查看。其他章节的...
- Python mysql批量更新数据(兼容动态数据库字段、表名)
-
一、应用场景上篇文章我们学会了在pymysql事务中批量插入数据的复用代码,既然有了批量插入,那批量更新和批量删除的操作也少不了。二、解决思路为了解决批量删除和批量更新的问题,提出如下思路:所有更新语...
- Python Pandas 库:解锁 combine、update 和compare函数的强大功能
-
在Python的数据处理领域,Pandas库提供了丰富且实用的函数,帮助我们高效地处理和分析数据。今天,咱们就来深入探索Pandas库中四个功能独特的函数:combine、combine_fi...
- 记录Python3.7.4更新到Python.3.7.8
-
Python官网Python安装包下载下载文件名称运行后选择升级选项等待安装安装完毕打开IDLE使用Python...
- Python千叶网原图爬虫:界面化升级实践
-
该工具以Python爬虫技术为核心,实现千叶网原图的精准抓取,突破缩略图限制,直达高清资源。新增图形化界面(GUI)后,操作门槛大幅降低:-界面集成URL输入、存储路径选择、线程设置等核心功能,...
- __future__模块:Python语言版本演进的桥梁
-
摘要Python作为一门持续演进的编程语言,在版本迭代过程中不可避免地引入了破坏性变更。__future__模块作为Python兼容性管理的核心机制,为开发者提供了在旧版本中体验新特性的能力。本文深入...
- Python 集合隐藏技能:add 与 update 的致命区别,90% 开发者都踩过坑
-
add函数的使用场景及错误注意添加单一元素:正确示例:pythons={1,2}s.add(3)print(s)#{1,2,3}错误场景:试图添加可变对象(如列表)会报错(Pytho...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)