Python NumPy库的安装和使用(pycharm numpy库安装)
off999 2024-09-18 22:30 33 浏览 0 评论
NumPy 就是一个数学运算的库,使用 C 语言实现的,所以运算速度非常快。该模块也不是 Python 自带的,需要自行安装。
可以使用 PIP 进行安装,命令如下:
pip install numpy使用该模块之前需要将其引入,常用的方法是:
import numpy as np 这样以后就可以使用 np 来表示该模块了。
NumPy 最常见的数据结构就是 ndarray,ndarray 表示 N-dimentioanl Array,就是多维数组的意思。本节也从这里开始介绍 NumPy。
ndarray的构造
可以使用多种方式来构建多维数组,最常见的是使用列表来构建多维数组。下面的例子便使用一维列表构建了一个一维数组。
>>> import numpy as np
>>> nda1 = np.array([1, 2, 3]) # 使用一维列表来作为输入
>>> nda1
array([1, 2, 3])6 >>> type(nda1)
<class 'numpy.ndarray'>如果希望构建二维数组,可以使用下面的方法:
>>> input_list = [
... [1, 2, 3],
... [4, 5, 6]
... ]
>>> nda2 = np.array(input_list)
>>> nda2
array([[1, 2, 3], # 查看值
[4, 5, 6]])
>>> type(nda2) # 查看类型
<class 'numpy.ndarray'>也可以指定一些特征值,让 NumPy 自动产生相关的数组。例如指定维度,让其产生所有元素都为正常 0 的数组,代码如下:
>>> np.zeros(5) # 5个元素的一维数组
array([0., 0., 0., 0., 0.])
>>> np.zeros((5, 2)) # 二维数组,5行,2列
array([[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]])也可以指定维度,让其产生所有元素值都为 1 的数组,代码如下:
>>> np.ones((5, 2)) # 二维数组,5行,2列,所有元素都为1
array([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]])
>>> np.ones(5) # 一维数组,5个元素
array([1., 1., 1., 1., 1.])还可以让 NumPy 自动产生等差数组,此时需要指定开始值、结束值和步长。代码如下:
>>> np.arange(3,7,2) # 从3开始,直到7,步长为2
array([3, 5])
>>> np.arange(3,7,1) # 从3开始,直到7,步长为1
array([3, 4, 5, 6])
>>> np.arange(7, 3, -1) # 从7开始,直到3,步长为-1
array([7, 6, 5, 4])
>>> np.arange(7, 3, -2) # 从7开始,直到3,步长为-2
array([7, 5])arange() 函数和 range() 类似,如果仅提供一个值,那么开始值就是 0,步长是 1,代码如下:
>>> np.arange(7)
array([0, 1, 2, 3, 4, 5, 6])
如果提供两个参数,那么步长为 1:
>>> np.arange(2, 5) # 从2开始,直到5,步长为1
array([2, 3, 4])
>>> np.arange(2, 6) # 从2开始,直到6,步长为1
array([2, 3, 4, 5])
另外一个等差数列函数是 linspace(),其指定开始位置和结束位置,但不指定步长,而是指定元素个数。例如从 1 开始,到 5 结束,一共有 8 个数,那么生成的数组如下面所示:
>>> np.linspace(1, 5, 8) # 包括1和5,等分8个点
array([1. , 1.57142857, 2.14285714, 2.71428571, 3.28571429,
3.85714286, 4.42857143, 5]) 可以发现元素个数和指定的一致,开始值和结束值也都被包含,而且它们的确是等差数列。
linspace() 函数比较有用,例如要画正弦函数在 0 到 2π 之间的图形,便可以使用该函数在 0 到 2π 之间产生均匀分布的 100 个点,然后使用 matplotlib 将它们画出来。下面是演示的代码:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2*np.pi, 100)
y = [np.sin(e) for e in x]
plt.plot(x, y)
plt.savefig("sindemo1.png") 运行后产生的图片如图 1 所示。
还可以使用 logspace() 函数让 NumPy 自动产生等比数列,此时需要指定开始点和结束点,同时指定点的个数。如果没有提供点的数目,默认是生成 50 个点。
>>> np.logspace(2.0, 3.0, num=4) # 4个点,其实位置是102,结束位置是103
array([ 100. , 215.443469, 464.15888336, 1000.])
下面是一个例子,其演示了 logspace() 的用法和参数 endpoint 的用法。endpoint=True 表示结束值被包含在输出数组中,否则表示不包含在输出数组中。下面是完整的代码:
import matplotlib.pyplot as plt
import numpy as np
N = 10 # 一共10个点
x1 = np.logspace(0.1, 1, N, endpoint=True) # 10被算作是最后一个点
x2 = np.logspace(0.1, 1, N, endpoint=False) # 10不被算作是最后一个点
y = np.zeros(N)
plt.plot(x1, y, 'o')
plt.plot(x2, y + 0.5, 'x')
plt.ylim([-0.5, 1]) # y轴的范围是-0.5到1
plt.savefig("logspace1.png") # 保存图片到文件 运行该脚本,得到的输出图片如图 2 所示。
还可以使用 full() 函数指定维度和一个值,让所有的元素都等于该值。该函数和 ones() 类似,但值是由用户指定的。
>>> np.full((2, 2), np.inf) # 所有元素都是无穷大
array([[inf, inf],
[inf, inf]])
>>> np.full((2, 2), 11) # 所有元素都是11
array([[11, 11],
[11, 11]])
>>> np.full((2, 2), 1.51) # 所有元素都是1.51
array([[1.51, 1.51],
[1.51, 1.51]])
使用 eye() 函数还可以自动生成单位矩阵,就是仅对角线上的值为 1,其他位置上的值都为 0。
>>> np.eye(2) # 2x2的单位矩阵
array([[1., 0.],
[0., 1.]])
>>> np.eye(3) # 3x3的单位矩阵
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])还可以自动产生随机的矩阵,例如可以使用 random.normal() 函数产生一个正态分布的一维矩阵:
>>> mu, sigma = 0, 0.1 # mu是平均值,sigma代表分散程度
>>> s = np.random.normal(mu, sigma, 1000)
>>> s.size # 元素个数为1000
1000
>>> np.mean(s) # 平均值接近0
-0.0011152161285000821
>>> abs(mu - np.mean(s)) < 0.01 # 平均值接近mu=0
True
>>> abs(sigma - np.std(s, ddof=1)) < 0.01 # 分散程度检查
True可以将生成的数据画出来,使用下面的代码:
import matplotlib.pyplot as plt
import numpy as np
mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)
count, bins, ignored = plt.hist(s, 30, density=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
linewidth=2, color='r')
plt.savefig("rand1.png") 运行该脚本,得到的输出图片文件如图 3 所示。
还可以生成完全随机的矩阵,方法是使用 np.random.rand(外形)函数。例如在下面的例子中,就生成了随机内容组成的指定外形的矩阵。
>>> np.random.rand(3,2) # 3x2的二维矩阵
array([[0.11319256, 0.84668147],
[0.4040353 , 0.70912343],
[0.6511614 , 0.80706271]])
>>> np.random.rand(3,2,2) # 3x2x2的三维矩阵
array([[[0.64851863, 0.3895985 ],
[0.63038544, 0.58402249]],
[[0.39816687, 0.92149102],
[0.07113285, 0.17109903]],
[[0.06713956, 0.39415293],
[0.06125844, 0.71276929]]])
>>> np.random.rand(4) # 一维矩阵
array([0.11918788, 0.91847982, 0.29599804, 0.42242323])相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
