百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python实现自动化测试框架如何进行数据参数化?这个包可以了解下

off999 2024-11-03 14:15 25 浏览 0 评论

1.数据参数化介绍

只要你是负责编写自动化测试脚本的,数据参数化这个思想你就肯定会用 ,数据参数化的工具你肯定的懂一些 ,因为它能大大的提高我们自动化脚本编写效率 。

1.1什么是数据参数化

所谓的数据参数化 ,是指所执行的测试用例步骤相同、而数据不同 ,每次运行用例只变化的是数据 ,于是将这些数据专门放在一起进行批量循环运行 ,从而完成测试用例执行的目的 。

以登录功能为例 ,若一个登录功能每次操作的步骤是 :

  1. 输入用户名
  2. 输入密码
  3. 点击登录按钮 。

但是,因为每次输入的数据不同,导致生成的测试用例就不同了 ,同样还是这个登录功能,加上数据就变为以下的用例了 。

  • case1 : 输入正确的用户名 ,输入正确的密码 ,点击登录
  • case2 : 输入正确的用户,输入错误的密码,点击登录
  • case3 :输入正确的用户名,输入空的密码,点击登录
  • casen : ...

可以看到 ,在这些用例中,每条用例最大的不同是什么呢 ?其实就是数据不同 。但是由于数据不同,从而生成了多条测试用例 ,在功能测试中,这些用例是需要分别写、分别执行 。

1.2.为什么要进行数据参数化 ?

在功能测试中,即使是相同的步骤 ,只是数据不同 ,我们亦然也要尽量分开编写每一条用例 ,比如像上面的编写方式 ,因为这些编写它的易读性更好 ,功能测试设计测试用例和执行用例往往不是一个人 ,所以用例编写的易读性是就是一个很重要的因素 。

但是如果将上面的用例进行自动化实现 ,虽然按照一条用例对应一个方法是一种很清晰的思路 ,但是它的最大问题就是代码冗余 ,当一个功能中步骤相同,只是数据不同时,你的数据越多,代码冗余度就越高 。你会发现每个测试方法中的代码就会是相同的 。

像代码冗余这种问题,在编写自动化时是必须要考虑的一个问题,因为随着代码量越多 ,冗余度越高、越难维护 。

以下就是是通过正常方式实现登录的自动化脚本 :

import unittest
from package_unittest.login import login


class TestLogin(unittest.TestCase):

    # case1 : 输入正确的用户名和正确的密码进行登录
    def test_login_success(self):
        expect_reslut = 0
        actual_result = login('admin','123456').get('code')
        self.assertEqual(expect_reslut,actual_result)

    # case2 : 输入正确的用户名和错误的密码进行登录
    def test_password_is_wrong(self):
        expect_reslut = 3
        actual_result = login('admin', '1234567').get('code')
        self.assertEqual(expect_reslut, actual_result)

    # case3 : 输入正确的用户名和空的密码进行登录
    def test_password_is_null(self):
        expect_reslut = 2
        actual_result = login('admin', '').get('code')
        self.assertEqual(expect_reslut, actual_result)
        
       

可以看到,三条用例对应三个测试方法,虽然清晰 ,代码每个方法中的代码几乎是相同的。

那如果用参数化实现的代码是什么呢 ? 可以看下面的这段代码 :

class TestLogin(unittest.TestCase):

    @parameterized.expand(cases)
    def test_login(self,expect_result,username,password):
        actual_result = login(username,password).get('code')
        self.assertEqual(expect_result,actual_result)

以上代码只有一条用例 ,不管这个功能有几条都能执行 。

通过上面两种形式的比较可以看出 :为什么要进行数据参数化呢 ?其实就是降低代码冗余、提高代码复用度 ,将主要编写测试用例的时间转化为编写测试数据上来 。

1.3.如何进行数据参数化

在代码中实现数据参数化都需要借助于外部工具 ,比如专门用于unittest的ddt , 既支持unittest、也支持pytest的parameterized ,专门在pytest中使用的fixture.params .

参数化工具

支持测试框架

备注

ddt

unittest

第三方包,需要下载安装

parameterized

nose,unittest,pytest

第三方包,需要下载安装

@pytest.mark.parametrize

pytest

本身属于pytest中的功能

@pytest.fixture(params=[])

pytest

本身属于pytest中的功能

以上实现数据参数化的工具有两个共同点:

  • 都能实现数据参数化
  • 都时装饰器来作用于测试用例脚本 。

2.模块介绍

1.下载安装 :

# 下载 
pip install parameterized

# 验证 :
pip show parameterized

2.导包

# 直接导入parameterized类
from parameterized import parameterized

3.官网示例

@parameterized 和 @parameterized.expand 装饰器接受列表 或元组或参数(...)的可迭代对象,或返回列表或 可迭代:

from parameterized import parameterized, param

# A list of tuples
@parameterized([
    (2, 3, 5),
    (3, 5, 8),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

# A list of params
@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

# An iterable of params
@parameterized(
    param.explicit(*json.loads(line))
    for line in open("testcases.jsons")
)
def test_from_json_file(...):
    ...

# A callable which returns a list of tuples
def load_test_cases():
    return [
        ("test1", ),
        ("test2", ),
    ]
@parameterized(load_test_cases)
def test_from_function(name):
    ...

请注意,使用迭代器或生成器时,将加载所有项 在测试运行开始之前放入内存(我们显式执行此操作以确保 生成器在多进程或多线程中只耗尽一次 测试环境)。

@parameterized装饰器可以使用测试类方法,并且可以独立使用 功能:

from parameterized import parameterized

class AddTest(object):
    @parameterized([
        (2, 3, 5),
    ])
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

@parameterized([
    (2, 3, 5),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

@parameterized.expand可用于生成测试方法 无法使用测试生成器的情况(例如,当测试 类是单元测试的一个子类。测试用例):

import unittest
from parameterized import parameterized

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        ("2 and 3", 2, 3, 5),
        ("3 and 5", 3, 5, 8),
    ])
    def test_add(self, _, a, b, expected):
        assert_equal(a + b, expected)

将创建测试用例:

$ nosetests example.py
test_add_0_2_and_3 (example.AddTestCase) ... ok
test_add_1_3_and_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

请注意,@parameterized.expand 的工作原理是在测试上创建新方法 .class。如果第一个参数是字符串,则该字符串将添加到末尾 的方法名称。例如,上面的测试用例将生成方法test_add_0_2_and_3和test_add_1_3_and_5。

@parameterized.expand 生成的测试用例的名称可以是 使用 name_func 关键字参数进行自定义。该值应 是一个接受三个参数的函数:testcase_func、param_num、 和参数,它应该返回测试用例的名称。testcase_func是要测试的功能,param_num将是 参数列表中测试用例参数的索引,参数(参数的实例)将是将使用的参数。

import unittest
from parameterized import parameterized

def custom_name_func(testcase_func, param_num, param):
    return "%s_%s" %(
        testcase_func.__name__,
        parameterized.to_safe_name("_".join(str(x) for x in param.args)),
    )

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        (2, 3, 5),
        (2, 3, 5),
    ], name_func=custom_name_func)
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

将创建测试用例:

$ nosetests example.py
test_add_1_2_3 (example.AddTestCase) ... ok
test_add_2_3_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

param(...) 帮助程序类存储一个特定测试的参数 箱。它可用于将关键字参数传递给测试用例:

from parameterized import parameterized, param

@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

如果测试用例具有文档字符串,则该测试用例的参数将为 附加到文档字符串的第一行。可以控制此行为 doc_func参数:

from parameterized import parameterized

@parameterized([
    (1, 2, 3),
    (4, 5, 9),
])
def test_add(a, b, expected):
    """ Test addition. """
    assert_equal(a + b, expected)

def my_doc_func(func, num, param):
    return "%s: %s with %s" %(num, func.__name__, param)

@parameterized([
    (5, 4, 1),
    (9, 6, 3),
], doc_func=my_doc_func)
def test_subtraction(a, b, expected):
    assert_equal(a - b, expected)
$ nosetests example.py
Test addition. [with a=1, b=2, expected=3] ... ok
Test addition. [with a=4, b=5, expected=9] ... ok
0: test_subtraction with param(*(5, 4, 1)) ... ok
1: test_subtraction with param(*(9, 6, 3)) ... ok

----------------------------------------------------------------------
Ran 4 tests in 0.001s

OK

最后@parameterized_class参数化整个类,使用 属性列表或将应用于 .class:

from yourapp.models import User
from parameterized import parameterized_class

@parameterized_class([
   { "username": "user_1", "access_level": 1 },
   { "username": "user_2", "access_level": 2, "expected_status_code": 404 },
])
class TestUserAccessLevel(TestCase):
   expected_status_code = 200

   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get('/url')
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()


@parameterized_class(("username", "access_level", "expected_status_code"), [
   ("user_1", 1, 200),
   ("user_2", 2, 404)
])
class TestUserAccessLevel(TestCase):
   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get("/url")
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()

@parameterized_class装饰器接受class_name_func论点, 它控制由 @parameterized_class 生成的参数化类的名称:

from parameterized import parameterized, parameterized_class

def get_class_name(cls, num, params_dict):
    # By default the generated class named includes either the "name"
    # parameter (if present), or the first string value. This example shows
    # multiple parameters being included in the generated class name:
    return "%s_%s_%s%s" %(
        cls.__name__,
        num,
        parameterized.to_safe_name(params_dict['a']),
        parameterized.to_safe_name(params_dict['b']),
    )

@parameterized_class([
   { "a": "hello", "b": " world!", "expected": "hello world!" },
   { "a": "say ", "b": " cheese :)", "expected": "say cheese :)" },
], class_name_func=get_class_name)
class TestConcatenation(TestCase):
  def test_concat(self):
      self.assertEqual(self.a + self.b, self.expected)
$ nosetests -v test_math.py
test_concat (test_concat.TestConcatenation_0_hello_world_) ... ok
test_concat (test_concat.TestConcatenation_0_say_cheese__) ... ok

使用单个参数

如果测试函数只接受一个参数并且该值不可迭代, 然后可以提供值列表,而无需将每个值包装在 元:

@parameterized([1, 2, 3])
def test_greater_than_zero(value):
   assert value > 0

但请注意,如果单个参数可迭代的(例如列表或 元组),那么它必须包装在元组、列表或 param(...) 装饰器中:

@parameterized([
   ([1, 2, 3], ),
   ([3, 3], ),
   ([6], ),
])
def test_sums_to_6(numbers):
   assert sum(numbers) == 6

虽然看似以上功能支持的挺多 ,但其实真正用的不多 ,因为它跟框架有很大关系的 。具体说明下 :

总结:

  • 它支持nose是最好的 . 如果你的自动化中使用nose,那么以上功能基本都能用到 。
  • 如果你用的测试框架是unittest ,你只能用到它的expand()这个函数 ,不过有这个函数也就够了 。
  • 如果你用的测试框架是pytest , 它支持了Pytest3的版本,再高版本的就不支持了,同时pytest也有自己的参数化工具,一般也不用它了。

3.项目实践

通过数据参数胡重新编写登录测试用例 ,将以前yaml中的登录用例数据转化为paramterized的数据格式 ,它的数据格式要求为:[(),(),()] . 所以,编写测试用例的数据就变为了以下的代码 。

# 将登录数据转化为paramterize所识别的格式。
def get_data():
    yaml_path = get_file_path('login.yaml')  # 获取login.yaml的全路径
    result = read_yaml(yaml_path)  # 转化为python对象
    login_data = result.get('login')  # 获取字典中login的值
    logger.debug("登录结果:{}".format(login_data))
    return (login_data)  # 获取字典中login的值



@allure.epic("vshop")
@allure.story("登录")
class TestLogin(unittest.TestCase):

    # case1 : 测试登录功能
    @parameterized.expand(get_data())
    def test_login(self,case_name,username,password,code,message):
        logger.info("从参数化获取的数据:{}|{}|{}|{}|{}".format(case_name,username,password,code,message))
        with allure.step("执行用例:{},输入用户名:{},输入密码:{}".format(case_name,username,password)):
            login_result = login(username,password)
        self.assertEqual(code, login_result.get('errno'))
        self.assertEqual(message, login_result.get('errmsg'))

这样的话,我们只编写了一条测试用例 ,但是在测试数据中有几条数据 ,都可以正常运行 。

4.项目总结

至此,我们已经实现了五步了 ,分别是 :

第一 、如何编写一个接口自动化框架 ,在第一篇博文中介绍了 。https://www.toutiao.com/item/7223778665283404323/

第二、如何使用unittest编写测试用例 ,已经在第二篇博文中介绍了 。https://www.toutiao.com/item/7225986414469825024/

第三、如何使用requests实现接口请求 ,并和测试用例如何对接 ,已经在第三篇博文中介绍了。https://www.toutiao.com/item/7231485629643997748/

第四、如何使用yaml编写测试数据 ,已经在第四篇博文中介绍了 。https://www.toutiao.com/item/7236369710286733861/

第五,如何使用allure生成测试报告,已经在第五篇博文中介绍了 。https://www.toutiao.com/item/7243783682144944697/

第六 ,如何使用loguru记录日志 ,已经在第六篇博文中介绍了 。https://www.toutiao.com/item/7253833815246815796/

第七,如何使用pymysql连接数据库,已经在第七篇博文中介绍了 。https://www.toutiao.com/item/7256573953278214668/

第八,如何进行数据参数化 ,也就是本篇博文了 。

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: