pymssql 读写SQL Server数据库(pymysql读取数据)
off999 2024-11-05 10:55 23 浏览 0 评论
pymssql包是Python语言用于连接SQL Server数据库的驱动程序(或者称作DB API),它是最终和数据库进行交互的工具。SQLAlchemy包就是利用pymssql包实现和SQL Server数据库交互的功能的。
一,pymssql包的基本组成
pymssql包由两个模块构成:pymssql 和 _mssql,pymssql 是建立在_mssql模块之上的模块,相对来说,_mssql性能更高。
pymssql模块由Connection和Cursor 两个大类构成:
- Connection类代表MS SQL Sever数据库的一个连接,
- Cursor类用于向数据库发送查询请求,并获取查询的的结果。
按照惯例,使用pymssql包查询数据库之前,首先创建连接:
import pymssql
conn = pymssql.connect(host='host',database='db_name',user='user',password='pwd',charset='utf8')
通过连接创建游标,通过游标执行SQL语句,查询数据或对数据进行更新操作:
cursor = conn.cursor()
cursor.execute("sql statement")
如果执行的是修改操作,需要提交事务;如果执行的是查询操作,不需要提交:
conn.commit()
在查询完成之后,关闭连接
conn.close()
二,连接
连接对象用于连接SQL Server引擎,并设置连接的属性,比如连接超时,字符集等。
1,创建连接对象
pymssql通过类函数来构建连接对,在创建连接对象的同时,打开连接:
class pymssql.Connection(user, password, host, database, timeout, login_timeout, charset, as_dict)
2,构建Cursor对象
在创建连接对象之后,创建Cursor对象,使用Cursor对象向数据库引擎发送查询请求,并获取查询的结果:
Connection.cursor(as_dict=False)
as_dict是布尔类型,默认值是False,表示返回的数据是元组(tuple)类型;如果设置为True,返回的数据集是字典(dict)类型。
3,提交查询和自动提交模式
在执行查询之后,必须提交当前的事务,以真正执行Cursor对象的查询请求:
Connection.commit()
默认情况下,自动提交模式是关闭的,用户可以设置自动提交,pymssql自动执行Cursor发送的查询请求:
Connection.autocommit(status)
status是bool值,True表示打开自动提交模式,False表示关闭自动提交模式,默认值是False。
4,关闭连接
在执行完查询之后,关闭连接,通常情况下,使用with 语句来自动关闭连接:
Connection.close()
三,Cursor对象
通过打开的连接对象来创建Cursor对象,通过Cursor对象向数据库引擎发送查询请求,并获取查询的结果。
1,执行查询
Cursor对象调用execute**()函数来执行查询请求,
Cursor.execute(operation)
Cursor.execute(operation, params)
Cursor.executemany(operation, params_seq)
参数注释:
- operation:表示执行的sql语句,
- params :表示sql语句的参数,
- params_seq:参数序列,用于sql语句包含多个参数的情况。
注意,除设置自动提交模式之外,必须在执行查询之后,通过连接对象来提交查询。
Connection.commit()
如果sql语句只包含一个参数,那么必须在sql语句中显式使用%s或%d作为占位符,分别用于引用字符型的参数和数值型的参数。
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
如果sql语句包含多个参数,那么使用list来传递参数:
cursor.executemany(
"INSERT INTO persons VALUES (%d, %s, %s)",
[(1, 'John Smith', 'John Doe'),
(2, 'Jane Doe', 'Joe Dog'),
(3, 'Mike T.', 'Sarah H.')])
2,获取查询结果
Cursor对象调用fetch**()函数来获取查询的结果:
Cursor.fetchone()
Cursor.fetchmany(size=None)
Cursor.fetchall()
fetch**()函数是迭代的:
- fetchone():表示从查询结果中获取下一行(next row)
- fetchmany():表示从查询结果中获取下面的多行(next batch)
- fetchall():表示从查询结果中获取剩余的所有数据行(all remaining)
3,跳过结果集
当查询的结果包含多个结果集时,可以跳过当前的结果集,跳到下一个结果集:
Cursor.nextset()
如果当前结果集还有数据行未被读取,那么这些剩余的数据行会被丢弃。
四,使用Cursor对象查询数据
游标cursor是由连接创建的对象,可以在游标中执行查询,并设置数据返回的格式。当执行select语句获取数据时,返回的数据行有两种格式:元组和字典,行的默认格式是元组。
cursor = conn.cursor(as_dict=True)
pymssql返回的数据集的格式是在创建游标时设置的,当参数 as_dict为True时,返回的行是字典格式,该参数的默认值是False,因此,默认的行格式是元组。
由于游标是一个迭代器,因此,可以使用for语句以迭代方式逐行处理查询的结果集。
for row in cursor:
1,以元组方式返回数据行
默认情况下,游标返回的每一个数据行,都是一个元组结构:
cursor=connect.cursor()
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
print('row = %r' % (row,))
2,以字典方式返回数据行
当设置游标以字典格式返回数据时,每一行都是一个字典结构:
cursor = conn.cursor(as_dict=True)
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
print("ID=%d, Name=%s" % (row['id'], row['name']))
五,使用Cursor对象更新数据
在执行update、delete或insert命令对数据进行更新时,需要显式提交事务。
1,执行单条语句修改数据
当需要更新数据时,调用游标的execute()函数执行SQL命令来实现,可以以参数化的方式来执行,参数化类似于python的string.format()函数,通过格式化的字符串、占位符和参数来生成TSQL脚本。
cursor.execute(operation)
cursor.execute(operation, params)
通过游标的execute()函数来执行TSQL语句,调用 commit() 来提交事务
cursor.execute("sql statement")
conn.commit()
或者以参数化的方式来执行:
cursor.execute("update id=1 FROM persons WHERE salesrep='%s'", 'John Doe')
conn.commit()
2,执行数据的多行插入
如果要在一个事务中执行多条SQL命令,可以调用游标的executemany()函数:
cursor.executemany(operation, params_seq)
如果需要插入多条记录,可以使用游标的executemany()函数,该函数包含模板SQL 命令和一个格式化的参数列表,用于在一条事务中插入多条记录:
args=[(1, 'John Smith', 'John Doe'),
(2, 'Jane Doe', 'Joe Dog'),
(3, 'Mike T.', 'Sarah H.')]
cursor.executemany("INSERT INTO persons VALUES (%d, %s, %s)", args )
conn.commit()
六,调用存储过程
从pymssql 2.0.0开始,可以使用callproc()函数来执行存储过程,callproc()函数的语法是:
result_args = cursor.callproc(proc_name, args=())
第一个参数是存储过程的名称,第二个参数args是一个元组类型,对于存储过程的每一个参数,都需要传递值。对于OUT参数,也必须传递值,通常传递0。
callproc()函数返回的是输入args的修改之后的副本,IN参数在result_args中不变,OUT参数在result_args中代表存储过程输出的值。
举个例子,对于存储add_num,有两个IN参数,一个OUT参数:
CREATE PROCEDURE add_num(IN num1 INT, IN num2 INT, OUT sum INT)
调用callproc()函数的格式是:
result_args = (5, 6, 0) # 0 is to hold value of the OUT parameter sum
cursor.callproc('add_num', result_args)
以下示例代码,使用上下文管理器来调用callproc()执行存储过程:
with pymssql.connect(server, user, password, "tempdb") as conn:
with conn.cursor(as_dict=True) as cursor:
cursor.callproc('sp_name', ('arg1',))
for row in cursor:
print("ID=%d, Name=%s" % (row['id'], row['name']))
经过我的测试,我发现不管是使用callproc(),还是使用execute('exec sp_name'),pymssql都不能执行复杂的存储过程,这让人很是头疼。
七,pymssql模块的基本操作
1,pymssql的基本操作
from os import getenv
import pymssql
server = getenv("PYMSSQL_TEST_SERVER")
user = getenv("PYMSSQL_TEST_USERNAME")
password = getenv("PYMSSQL_TEST_PASSWORD")
conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor(as_dict=False)
cursor.execute("TSQL query")
cursor.executemany("INSERT INTO persons VALUES (%d, %s, %s)",
[(1, 'John Smith', 'John Doe'),
(2, 'Jane Doe', 'Joe Dog'),
(3, 'Mike T.', 'Sarah H.')])
# you must call commit() to persist your data if you don't set autocommit to True
conn.commit()
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
row = cursor.fetchone()
while row:
print("ID=%d, Name=%s" % (row[0], row[1]))
row = cursor.fetchone()
conn.close()
2,以字典集返回数据行
conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor(as_dict=True)
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
print("ID=%d, Name=%s" % (row['id'], row['name']))
conn.close()
3,使用with语句
with是上下文管理器,可以自动关闭上下文。如果使用with语句来创建连接对象和Cursor对象,那么就不需要显式地关闭连接和Cursor对象,在语句执行完成之后,Python会自动检测连接对象和Cursor对象的作用域,一旦连接对象或Cursor对象不再有效,Python就会关闭连接或Cursor对象。
with pymssql.connect(server, user, password, "tempdb") as conn:
with conn.cursor(as_dict=True) as cursor:
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
print("ID=%d, Name=%s" % (row['id'], row['name']))
八,附上代码库
附上代码,以飨读者。
import pymssql
from sqlalchemy import create_engine
import pandas as pd
from sqlalchemy.sql import text as sql_text
class DBHelper:
def __init__(self):
self.name='DB Helper'
self.db_host = r'sql server'
self.db_name = 'db name'
self.db_user = r'sa'
self.db_password = r'pwd'
######################################################
## data connection ##
######################################################
def get_engine(self):
str_format = 'mssql+pymssql://{0}:{1}@{2}/{3}?charset=utf8'
connection_str = str_format.format(self.db_user,self.db_password,self.db_host,self.db_name)
engine = create_engine(connection_str,echo=False)
return engine
def get_pymssql_conn(self):
conn = pymssql.connect(self.db_host, self.db_user, self.db_password, self.db_name)
return conn
######################################################
## common SQL APIs ##
######################################################
def write_data(self,df,destination,if_exists='append',schema='dbo'):
engine = self.get_engine()
df.to_sql(destination, con=engine, if_exists=if_exists,index = False, schema=schema
, method='multi', chunksize=1000)
def read_data(self,sql):
engine = self.get_engine()
df = pd.read_sql(sql, con=engine)
return df
def exec_sql(self,sql):
engine = self.get_engine()
con = engine.connect()
with con.begin() as tran:
con.execute(sql_text(sql).execution_options(autocommit=True))
def exec_sp(self,sp_name,*paras):
with pymssql.connect(self.db_host, self.db_user, self.db_password, database=self.db_name) as conn:
with conn.cursor(as_dict=False) as cursor:
try:
cursor.callproc(sp_name, paras)
cursor.nextset()
conn.commit()
except Exception as e:
print(e)
def exec_sp_result(self,sp_name,*paras):
with pymssql.connect(self.db_host, self.db_user, self.db_password, database=self.db_name) as conn:
with conn.cursor(as_dict=True) as cursor:
try:
cursor.callproc(sp_name, paras)
cursor.nextset()
result=cursor.fetchall()
conn.commit()
df=pd.DataFrame.from_records(result)
return df
except Exception as e:
print(e)
相关推荐
- 第九章:Python文件操作与输入输出
-
9.1文件的基本操作9.1.1打开文件理论知识:在Python中,使用open()函数来打开文件。open()函数接受两个主要参数:文件名和打开模式。打开模式决定了文件如何被使用,常见的模式有:&...
- Python的文件处理
-
一、文件处理的流程1.打开文件,得到文件句柄并赋值给一个变量2.通过句柄对文件进行操作3.关闭文件示例:d=open('abc')data1=d.read()pri...
- Python处理文本的25个经典操作
-
Python处理文本的优势主要体现在其简洁性、功能强大和灵活性。具体来说,Python提供了丰富的库和工具,使得对文件的读写、处理变得轻而易举。简洁的文件操作接口Python通过内置的open()函数...
- Python学不会来打我(84)python复制文件操作总结
-
上一篇文章我们分享了python读写文件的操作,主要用到了open()、read()、write()等方法。这一次是在文件读写的基础之上,我们分享文件的复制。#python##python自学##...
- python 文件操作
-
1.检查目录/文件使用exists()方法来检查是否存在特定路径。如果存在,返回True;如果不存在,则返回False。此功能在os和pathlib模块中均可用,各自的用法如下。#os模块中e...
- 《文件操作(读写文件)》
-
一、文件操作基础1.open()函数核心语法file=open("filename.txt",mode="r",encoding="utf-8"...
- 栋察宇宙(二十一):Python 文件操作全解析
-
分享乐趣,传播快乐,增长见识,留下美好。亲爱的您,这里是LearingYard学苑!今天小编为大家带来“Python文件操作全解析”欢迎您的访问!Sharethefun,spreadthe...
- 值得学习练手的70个Python项目(附代码),太实用了
-
Python丰富的开发生态是它的一大优势,各种第三方库、框架和代码,都是前人造好的“轮子”,能够完成很多操作,让你的开发事半功倍。下面就给大家介绍70个通过Python构建的项目,以此来学习Pytho...
- python图形化编程:猜数字的游戏
-
importrandomnum=random.randint(1,500)running=Truetimes=0##总的次数fromtkinterimport*##导入所有tki...
- 一文讲清Python Flask的Web编程知识
-
刚入坑Python做Web开发的新手,还在被配置臃肿、启动繁琐折磨?Flask这轻量级框架最近又火出圈,凭5行代码启动Web服务的极致简洁,让90后程序员小张直呼真香——毕竟他刚用这招把部署时间从半小...
- 用python 编写一个hello,world
-
第一种:交互式运行一个hello,world程序:这是写python的第一步,也是学习各类语言的第一步,就是用这种语言写一个hello,world程序.第一步,打开命令行窗口,输入python,第二步...
- python编程:如何使用python代码绘制出哪些常见的机器学习图像?
-
专栏推荐绘图的变量单变量查看单变量最方便的无疑是displot()函数,默认绘制一个直方图,并你核密度估计(KDE)sns.set(color_codes=True)np.random.seed(su...
- 如何编写快速且更惯用的 Python 代码
-
Python因其可读性而受到称赞。这使它成为一种很好的第一语言,也是脚本和原型设计的流行选择。在这篇文章中,我们将研究一些可以使您的Python代码更具可读性和惯用性的技术。我不仅仅是pyt...
- Python函数式编程的详细分析(代码示例)
-
本篇文章给大家带来的内容是关于Python函数式编程的详细分析(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。FunctionalProgramming,函数式编程。Py...
- 编程小白学做题:Python 的经典编程题及详解,附代码和注释(七)
-
适合Python3+的6道编程练习题(附详解)1.检查字符串是否以指定子串开头题目描述:判断字符串是否以给定子串开头(如"helloworld"以"hello&...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)