百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

怎样用Python进行数据转换和归一化

off999 2024-11-11 12:38 14 浏览 0 评论

怎样用Python进行数据转换和归一化

1、概述

实际的数据库极易受到噪声、缺失值和不一致数据的侵扰,因为数据库太大,并且多半来自多个异种数据源,低质量的数据将会导致低质量的数据分析结果,大量的数据预处理技术随之产生。本文让我们来看一下数据预处理中常用的数据转换和归一化方法都有哪些。

2、数据转换(Data Transfer)

对于字符型特征的处理:转换为字符型。

数据转换其实就是把一些字符型数据转换为计算机可以识别的数值型数据的过程,例如我们有性别这个属性,其中有“男”、“女”这两个元素,那我们就可以用数字0代表“男”,1代表“女”。

用python代码来实现一下:

import pandas as pd

data = {'性别' : ['男', '女', '男', '女', '女']}
df = pd.DataFrame(data)
print(df)

df[u'性别'] = df[u'性别'].map({'男': 1, '女': 0})
print(df)


3、零均值归一化(Z-Score Normalization)

说到零均值归一化,我们就要先来聊聊归一化是什么。

归一化是我们在数据预处理中经常要用到的方法。假设我们通过一个人的身高和体重去判断一个人的胖瘦,有一个人的身高为1.80m体重为80kg,大家都知道胖瘦是由身高和体重共同来决定的,但是此时体重的数值远远大于身高,也就会导致在计算的时候体重被赋予更高的权重,最终导致预测结果不准确,此时我们就会想到把两种属性映射到一个范围内去计算,这种方法就叫做归一化。

了解了归一化,再让我们来了解一下零均值归一化。零均值归一化也叫Z-score规范化(零均值标准化),该方法要求变换后各维特征的均值为0,方差为1,计算方式是将特征值减去均值,再除以标准差。

公式:$z-score = \frac{x_i - \mu}{\sigma}$

注:我们一般会把train和test放在一起做标准化

用python代码来实现一下:

from sklearn.preprocessing import StandardScaler, MinMaxScaler
import pandas as pd

views = pd.DataFrame([1295., 25., 1900., 50., 100., 300.], columns=['views'])
print(views)



ss = StandardScaler()
views['zscore'] = ss.fit_transform(views[['views']])


根据结果我们可以看到,属性views被缩放到了很小的范围内,也成功避免了属性值间差异过大的问题。

4、最大最小归一化(Min-Max Scaling)

归一化的另一种常用方法就是最大最小归一化(线性函数归一化),该方法将所有的数据变换到[0,1]区间内。

公式:$\frac{x_i - min(x)}{max(x) - min(x)}$

用python代码来实现一下:

mms = MinMaxScaler()
views['minmax'] = mms.fit_transform(views[['views']])
print(views)

根据结果我们可以看出,最大最小归一化相比于零均值归一化而言映射到了一个更小的空间内,

5、为什么要进行归一化

我们不妨从随机梯度下降的角度来思考一下,假设有两种数值型特征,x1的取值范围是[0,100],x2的取值范围是[0,10],我们就可以构造出一个图1中a的图形。当我们的学习速率相同的时候,很明显x1的更新速度会大于x2的更新速度,也就会导致收敛速度变慢,但是当我们把x1和x2归一化到同一个数值空间时,就会变成图1中b的图形,x1和x2的更新速度保持一致,从而加快了收敛速度。


图1

6、小结

1、在实际应用中,通过梯度下降法进行求解的模型通常都是需要进行归一化的,例如:线性回归、逻辑回归、支持向量机、神经网络等。而决策树模型中信息增益与数据是否经过了归一化没有关系,此时是不需要进行归一化的。

2、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,零均值归一化表现的更好。

3、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用最大最小归一化或其他归一化方法。


相关推荐

实战:用 Python+Flask+Echarts 构建电商实时数据大屏

在电商运营中,实时掌握销售趋势、用户行为等核心数据是决策的关键。本文将从实战角度,详解如何用Python+Flask+Echarts技术栈,快速搭建一个支持实时更新、多维度可视化的电商数据大屏,帮...

DeepSeek完全使用手册:从新手到高手的2000字实操指南

一、工具定位与核心功能矩阵(200字)DeepSeek是一款专注于深度推理的强大AI助手,其功能丰富多样,可归纳为4大能力象限:plaintext差异化优势:DeepSeek支持最长达16Ktok...

Python绘制可爱的图表 cutecharts

一个很酷的python手绘样式可视化包——可爱的图表cutecharts。Cutecharts非常适合为图表提供更个性化的触感。Cutecharts与常规的Matplotlib和Seabo...

第十二章:Python与数据处理和可视化

12.1使用pandas进行数据处理12.1.1理论知识pandas是Python中最常用的数据处理库之一,它提供了高效的数据结构和数据分析工具。pandas的核心数据结构是Serie...

5分钟就能做一个Excel动态图表,你确定不学学?(纯gif教学)

本文说明下图是一个比较酷炫的Excel动态图表,最难的部分就是用到了一个复选框控件。其实这个控件我很早就见过,但是不会用呀!望洋兴叹。这次呢,我也是借着这个文章为大家讲述一下这个控件的使用。本文没有...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

如何使用 Python 将图表写入 Excel

将Python生成的图表写入Excel文件是数据分析和可视化中常见的需求。Python提供了多种库(如matplotlib、openpyxl和xlsxwriter)来实现这一功能。本文...

Excel 图表制作太痛苦?用 Python 生成动态交互图表

做个动态图表花了3小时?你该换方法了!上周帮销售部做季度汇报图表,Excel操作把我整崩溃了——插入折线图后发现数据源选错,重新选择又得调格式想做动态筛选图表,捣鼓"开发工具"...

Python Matplotlib 入门教程:可视化数据的基石

一、简介Matplotlib是Python中最流行的数据可视化库,提供从简单折线图到复杂3D图形的完整解决方案。其核心优势在于:o灵活性强:支持像素级样式控制o兼容性好:与NumPy、Pa...

20种Python数据可视化绘图 直接复制可用

本文介绍20种python数据绘图方法,可直接用于科研绘图或汇报用图。1.折线图(LinePlot)-描述数据随时间或其他变量的变化。importmatplotlib.pyplotasp...

Python os模块完全指南:轻松玩转文件管理与系统操作

Pythonos模块完全指南:轻松玩转文件管理与系统操作os模块是Python与操作系统对话的"瑞士军刀",学会它能让你轻松管理文件、操控路径、获取系统信息。本教程通过场景化案例+...

Python中h5py与netCDF4模块在Anaconda环境的下载与安装

本文介绍基于Anaconda环境,下载并安装Python中h5py与netCDF4这两个模块的方法。h5py与netCDF4这两个模块是与遥感图像处理、地学分析等GIS操作息息相关的模块,应用...

python中的模块、库、包有什么区别?

一文带你分清Python模块、包和库。一、模块Python模块(Module),是一个Python文件,以.py结尾,包含了Python对象定义和Python语句。模块能定义函数,类和变...

centos7 下面使用源码编译的方式安装python3.11

centos7下面使用源码编译的方式安装python3.11,步骤如下:cd/root#只是将python3.11的安装包下载到/root目录下wgethttps://www.python.o...

Python其实很简单 第十四章 模块

模块是一组程序代码,可以是别人已经写好的,也可以是自己编写的,但都是已经存在的,在编程时直接使用就可以了。模块机制的最大好处就是程序员不再编写重复的代码,而直接利用已有的成果,这样就能将更多的精力投入...

取消回复欢迎 发表评论: