面试:聊一聊 Java 数组默认的排序算法,我懵了
off999 2024-11-14 16:54 13 浏览 0 评论
之前一直没关注过Java底层排序的算法,才仔细看了下Timsort。
Timsort 是一个混合、稳定的排序算法,简单来说就是归并排序和二分插入排序算法的混合体,号称世界上最好的排序算法。
它由 Tim Peters 在 2002 年实现,一直是 Python 的标准排序算法。Java 在 1.7 后增加了 Timsort API ,从Java中的 Arrays.sort 可以看出它是默认的排序算法,主要用于非原始类型数组排序。所以不管是进阶编程还是面试,理解 Timsort 都是比较重要。
// List sort()
default void sort(Comparator<? super E> c) {
Object[] a = this.toArray();
//数组排序
Arrays.sort(a, (Comparator) c);
...
}
// Arrays.sort
public static <T> void sort(T[] a, Comparator<? super T> c) {
if (c == null) {
sort(a);
} else {
// 废弃版本
if (LegacyMergeSort.userRequested)
legacyMergeSort(a, c);
else
TimSort.sort(a, 0, a.length, c, null, 0, 0);
}
}
public static void sort(Object[] a) {
if (LegacyMergeSort.userRequested)
legacyMergeSort(a);
else
ComparableTimSort.sort(a, 0, a.length, null, 0, 0);
}
理解 Timsort 需要先回顾下以下知识。
指数搜索
指数搜索,也被称为加倍搜索,是一种用于在大型数组中搜索元素而创建的算法。它是一个两步走的过程。首先,该算法试图找到目标元素存在的范围 (L,R),然后在这个范围内使用二叉搜索来寻找目标的准确位置。该搜索算法在大量有序数组中比较有效。
二分插入排序
插入排序算法很简单,大体过程是从第二个元素开始,依次向前移动交换元素直到找到合适的位置。
插入排序最优时间复杂度也需要 O(n) ,我们可以使用二分查找来减少插入时元素的比较次数,将时间复杂度降为 O(log n)。但是注意,二分查找插入排序仍然需要移动相同数量的元素,但是复制数组的时间消耗低于逐一互换操作。
特点:二分插入排序主要优点是在小数据集场景下排序效率很高。
public static int[] sort(int[] arr) throws Exception {
// 开始遍历第一个元素后的所有元素
for (int i = 1; i < arr.length; i++) {
// 需要插入的元素
int tmp = arr[i];
// 从已排序最后一个元素开始,如果当前元素比插入元素大,就往后移动
int j = i;
while (j > 0 && tmp < arr[j - 1]) {
arr[j] = arr[j - 1];
j--;
}
// 将元素插入
if (j != i) {
arr[j] = tmp;
}
}
return arr;
}
public static int[] binarySort(int[] arr) throws Exception {
for (int i = 1; i < arr.length; i++) {
// 需要插入的元素
int tmp = arr[i];
// 通过二分查找直接找到插入位置
int j = Math.abs(Arrays.binarySearch(arr, 0, i, tmp) + 1);
// 找到插入位置后,通过数组复制向后移动,腾出元素位置
System.arraycopy(arr, j, arr, j + 1, i - j);
// 将元素插入
arr[j] = tmp;
}
return arr;
}
归并排序
归并排序是分而治之策略的算法,包含两个主要的操作:分割与合并。大体过程是,通过递归将数组不断分成两半,一直到无法再分割(也就是数组为空或只剩一个元素),然后进行合并排序。简单来说合并操作就是不断取两个较小的排序数组然后将它们组合成一个更大的数组。
特点:归并排序主要为大数据集场景设计的排序算法。
public static void mergeSortRecursive(int[] arr, int[] result, int start, int end) {
// 跳出递归
if (start >= end) {
return;
}
// 待分割的数组长度
int len = end - start;
int mid = (len >> 1) + start;
int left = start; // 左子数组开始索引
int right = mid + 1; // 右子数组开始索引
// 递归切割左子数组,直到只有一个元素
mergeSortRecursive(arr, result, left, mid);
// 递归切割右子数组,直到只有一个元素
mergeSortRecursive(arr, result, right, end);
int k = start;
while (left <= mid && right <= end) {
result[k++] = arr[left] < arr[right] ? arr[left++] : arr[right++];
}
while (left <= mid) {
result[k++] = arr[left++];
}
while (right <= end) {
result[k++] = arr[right++];
}
for (k = start; k <= end; k++) {
arr[k] = result[k];
}
}
public static int[] merge_sort(int[] arr) {
int len = arr.length;
int[] result = new int[len];
mergeSortRecursive(arr, result, 0, len - 1);
return arr;
}
Timsort 执行过程
算法大体过程是,如果数组长度小于指定阀值(MIN_MERGE)直接使用二分插入算法完成排序,否则执行下面步骤:
- 先从数组左边开始,执行升序运行得到一个子序列。
- 将这个子序列放入运行堆栈里,等待执行合并。
- 检查运行堆栈里的子序列,如果满足合并条件则执行合并。
- 重复第一个步骤,执行下一个升序运行。
升序运行
升序运行就是从数组查找一段连续递增(升序)或递减(降序)子序列的过程,如果子序列为降序则将它反转为升序,也可以将这个过程简称为 run。比如数组 [2,3,6,4,9,30],可以查找到三个子序列,[2,3,6]、[4,9]、[30],或说3个 run。
几个关键阀值
MIN_MERGE
这是个常数值,可以简单理解为执行归并的最小阀值,如果整个数组长度小于它,就没必要执行那么复杂的排序,直接二分插入就行了。在 Tim Peter 的 C 实现中为 64,但实际经验中设置为 32 效果更好,所以 java 里面的值为 32。
降序反转时为保证稳定性,相同元素不会被颠倒。
minrun
在合并序列的时候,如果 run 数量等于或者略小于 2 的幂次方的时候,合并效率最高;如果略大于 2 的幂次方,效率就会显著降低。所以为了提高合并效率,需要尽量控制每个 run 的长度,通过定义一个 minrun 来表示每个 run 的最小长度,如果长度太短,就用二分插入排序把 run 后面的元素插入到前面的 run 里面。
一般在执行排序算法之前,会先计算出这个 minrun(它是根据数据的特点来进行自我调整),minrun 会从32到64选择一个数字,因此数据的大小除以 minrun 等于或略小于 2 的幂次方。比如长度是 65 ,那么 minrun 的值就是 33;如果长度是 165,minrun 就是 42。
看下 Java 里面的实现,如果数据长度(n) < MIN_MERGE,则返回数据长度。如果数据长度恰好是 2 的幂次方,则返回MIN_MERGE/2
也就是16,否则返回一个MIN_MERGE/2 <= k <= MIN_MERGE范围的值k,这样可以使的 n/k 接近但严格小于 2 的幂次方。
private static int minRunLength(int n) {
assert n >= 0;
int r = 0; // 如果低位任何一位是1,就会变成1
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
MIN_GALLOP
MIN_GALLOP 是为了优化合并的过程设定的一个阈值,控制进入 GALLOP 模式中, GALLOP 模式放在后面讲。
下面是 Timsort 执行流程图
运行合并
当栈里面的 run 满足合并条件时,它就将栈里面相邻的两个run 进行合并。
合并条件
Timsort 为了执行平衡合并(让合并的 run 大小尽可能相同),制定了一个合并规则,对于在栈顶的三个run,分别用X、Y 和 Z 表示他们的长度,其中 X 在栈顶,它们必须始终维持以下下的两个规则:
Z > Y + X Y > X
一旦有其中的一个条件不被满足,则将 Y 与 X 或 Z 中的较小者合并生成新的 run,并再次检查栈顶是否仍然满足条件。如果不满足则会继续进行合并,直至栈顶的三个元素都满足这两个条件,如果只剩两个run,则满足 Y > X 即可。
如下下图例子
- 当 Z <= Y+X ,将 X+Y 合并,此时只剩下两个run。
- 检测 Y < X ,执行合并,此时只剩下 X,则退出合并检测。
我们看下 Java 里面的合并实现
private void mergeCollapse() {
// 当存在两个以上run执行合并检查
while (stackSize > 1) {
// 表示 Y
int n = stackSize - 2;
// Z <= Y + X
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
// 如果 Z < X 合并Z+Y ,否则合并X+Y
if (runLen[n - 1] < runLen[n + 1])
n--;
// 合并相邻的两个run,也就是runLen[n] 和 runLen[n+1]
mergeAt(n);
} else if (runLen[n] <= runLen[n + 1]) {
// Y <= X 合并 Y+X
mergeAt(n);
} else {
// 满足两个条件,跳出循环
break;
}
}
}
合并内存开销
原始归并排序空间复杂度是 O(n) 也就是数据大小。为了实现中间项,Timsort 进行了一次归并排序,时间开销和空间开销都比 O(n) 小。
优化是为了尽可能减少数据移动,占用更少的临时内存,先找出需要移动的元素,然后将较小序列复制到临时内存,再按最终顺序排序并填充到组合序列中。
比如我们需要合并 X [1, 2, 3, 6, 10] 和 Y [4, 5, 7, 9, 12, 14, 17],X 中最大元素是10,我们可以通过二分查找确定,它需要插入到 Y 的第 5个位置才能保证顺序,而 Y 中最小元素是4,它需要插入到 X 中的第4个位置才能保证顺序,那么就知道了[1, 2, 3] 和 [12, 14, 17] 不需要移动,我们只需要移动 [6, 10] 和 [4, 5, 7, 9],然后只需要分配一个大小为 2 临时存储就可以了。
合并优化
在归并排序算法中合并两个数组需要一一比较每个元素,为了优化合并的过程,设定了一个阈值 MIN_GALLOP,当B中元素向A合并时,如果A中连续 MIN_GALLOP 个元素比B中某一个元素要小,那么就进入GALLOP模式。
根据基准测试,比如当A中连续7个以上元素比B中某一元素小时切入该模式效果才好,所以初始值为7。
当进入GALLOP模式后,搜索算法变为指数搜索,分为两个步骤,比如想确定 A 中元素x在 B 中确定的位置
- 首先在 B 中找到合适的索引区间 使得 x 元素在这个范围内;
- 然后在第一步找到的范围内通过二分搜索来找到对应的位置。
只有当一次运行的初始元素不是另一次运行的前七个元素之一时,驰骋才是有益的。这意味着初始阈值为 7。
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)