【深度解析】Python实现机器学习:10大经典算法详解与实战示例
off999 2024-11-14 17:00 15 浏览 0 评论
目录
- 1. 线性回归 (Linear Regression)
- 2. 逻辑回归 (Logistic Regression)
- 3. K-最近邻 (K-Nearest Neighbors, KNN)
- 4. 支持向量机 (Support Vector Machine, SVM)
- 5. 决策树 (Decision Tree)
- 6. 随机森林 (Random Forest)
- 7. 朴素贝叶斯 (Naive Bayes)
- 8. K-均值聚类 (K-Means Clustering)
- 9. 主成分分析 (Principal Component Analysis, PCA)
- 10. 梯度提升 (Gradient Boosting)
- 总结
为了展示10个经典的机器学习算法的最简例子,我将为每个算法编写一个小的示例代码。这些算法将包括线性回归、逻辑回归、K-最近邻(KNN)、支持向量机(SVM)、决策树、随机森林、朴素贝叶斯、K-均值聚类、主成分分析(PCA)、和梯度提升(Gradient Boosting)。我将使用常见的机器学习库,如 scikit-learn,numpy 和 pandas 来实现这些算法。
让我们开始吧。
1. 线性回归 (Linear Regression)
线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。
理解线性回归的最好办法是回顾一下童年。假设在不问对方体重的情况下,让一个五年级的孩子按体重从轻到重的顺序对班上的同学排序,你觉得这个孩子会怎么做?他(她)很可能会目测人们的身高和体型,综合这些可见的参数来排列他们。这是现实生活中使用线性回归的例子。实际上,这个孩子发现了身高和体型与体重有一定的关系,这个关系看起来很像上面的等式。
2. 逻辑回归 (Logistic Regression)
别被它的名字迷惑了!这是一个分类算法而不是一个回归算法。该算法可根据已知的一系列因变量估计离散数值(比方说二进制数值 0 或 1 ,是或否,真或假)。简单来说,它通过将数据拟合进一个逻辑函数来预估一个事件出现的概率。因此,它也被叫做逻辑回归。因为它预估的是概率,所以它的输出值大小在 0 和 1 之间(正如所预计的一样)。
import numpy as np
from sklearn.linear_model import LogisticRegression
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建逻辑回归模型并拟合数据
model = LogisticRegression()
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
3. K-最近邻 (K-Nearest Neighbors, KNN)
该算法可用于分类问题和回归问题。然而,在业界内,K – 最近邻算法更常用于分类问题。K – 最近邻算法是一个简单的算法。它储存所有的案例,通过周围k个案例中的大多数情况划分新的案例。根据一个距离函数,新案例会被分配到它的 K 个近邻中最普遍的类别中去。
这些距离函数可以是欧式距离、曼哈顿距离、明式距离或者是汉明距离。前三个距离函数用于连续函数,第四个函数(汉明函数)则被用于分类变量。如果 K=1,新案例就直接被分到离其最近的案例所属的类别中。有时候,使用 KNN 建模时,选择 K 的取值是一个挑战。
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建KNN模型并拟合数据
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
4. 支持向量机 (Support Vector Machine, SVM)
这是一种分类方法。在这个算法中,我们将每个数据在N维空间中用点标出(N是你所有的特征总数),每个特征的值是一个坐标的值。
import numpy as np
from sklearn.svm import SVC
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建SVM模型并拟合数据
model = SVC()
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
5. 决策树 (Decision Tree)
这是我最喜爱也是最频繁使用的算法之一。这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建决策树模型并拟合数据
model = DecisionTreeClassifier()
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
6. 随机森林 (Random Forest)
随机森林是表示决策树总体的一个专有名词。在随机森林算法中,我们有一系列的决策树(因此又名“森林”)。为了根据一个新对象的属性将其分类,每一个决策树有一个分类,称之为这个决策树“投票”给该分类。这个森林选择获得森林里(在所有树中)获得票数最多的分类。
import numpy as np
from sklearn.ensemble import RandomForestClassifier
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建随机森林模型并拟合数据
model = RandomForestClassifier(n_estimators=10)
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
7. 朴素贝叶斯 (Naive Bayes)
在预示变量间相互独立的前提下,根据贝叶斯定理可以得到朴素贝叶斯这个分类方法。用更简单的话来说,一个朴素贝叶斯分类器假设一个分类的特性与该分类的其它特性不相关。举个例子,如果一个水果又圆又红,并且直径大约是 3 英寸,那么这个水果可能会是苹果。即便这些特性互相依赖,或者依赖于别的特性的存在,朴素贝叶斯分类器还是会假设这些特性分别独立地暗示这个水果是个苹果。
朴素贝叶斯模型易于建造,且对于大型数据集非常有用。虽然简单,但是朴素贝叶斯的表现却超越了非常复杂的分类方法。
import numpy as np
from sklearn.naive_bayes import GaussianNB
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建朴素贝叶斯模型并拟合数据
model = GaussianNB()
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
8. K-均值聚类 (K-Means Clustering)
K – 均值算法是一种非监督式学习算法,它能解决聚类问题。使用 K – 均值算法来将一个数据归入一定数量的集群(假设有 k 个集群)的过程是简单的。一个集群内的数据点是均匀齐次的,并且异于别的集群。
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
# 创建K-Means模型并拟合数据
model = KMeans(n_clusters=2)
model.fit(X)
# 预测
y_pred = model.predict(X)
# 绘制结果
plt.scatter(X, np.zeros_like(X), c=y_pred, cmap='viridis')
plt.title("K-Means Clustering Example")
plt.xlabel("X")
plt.show()
9. 主成分分析 (Principal Component Analysis, PCA)
主成分分析(PCA, Principal Component Analysis)是一种常用的数据降维技术,旨在将一组可能相关的变量转换为一组线性不相关的变量,称为主成分,同时尽可能多地保留原始数据集的信息。
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
# 生成示例数据
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
# 创建PCA模型并拟合数据
pca = PCA(n_components=2)
X_r = pca.fit_transform(X)
# 绘制结果
plt.scatter(X_r[:, 0], X_r[:, 1])
plt.title("PCA Example")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()
10. 梯度提升 (Gradient Boosting)
梯度提升模型是一种集成学习方法,通过迭代地训练多个弱学习器(通常是决策树),并将它们组合成一个强学习器。梯度提升(Gradient Boosting)模型可以通过分析特征重要性来帮助我们理解数据中各个特征的相对重要程度。
import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
# 生成示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([0, 0, 0, 1, 1])
# 创建梯度提升模型并拟合数据
model = GradientBoostingClassifier(n_estimators=10)
model.fit(X, y)
# 预测
y_pred = model.predict(X)
print("Predictions:", y_pred)
总结
到此这篇关于Python机器学习10大经典算法的讲解和示例的文章就介绍到这了。
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)