百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

八个Python性能优化的方法(python 性能优化)

off999 2024-09-20 22:40 24 浏览 0 评论

Python的低性能性一直是被人诟病的,那么如何在日常的使用中优化其性能,今天,浙江优就业的小U老师就为大家带来一些Python优化的方法,以方便大家提升工作效率。

1、合理使用 copy 与 deepcopy

对于 dict 和 list 等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用 copy 包里的 copy 和 deepcopy,这两个函数的不同之处在于后者是递归复制的。效率也不一样:(以下程序在 ipython 中运行)

import copy

a = range(100000)

%timeit -n 10 copy.copy(a) # 运行10次 copy.copy(a)

%timeit -n 10 copy.deepcopy(a)

10 loops, best of 3: 1.55 ms per loop

10 loops, best of 3: 151 ms per loop

timeit 后面的-n表示运行的次数,后两行对应的是两个 timeit 的输出,下同。由此可见后者慢一个数量级。

2、使用 dict 或 set 查找元素

python dict 和 set 都是使用 hash 表来实现(类似c++11标准库中unordered_map),查找元素的时间复杂度是O(1)

a = range(1000)s = set(a)d = dict((i,1) for i in a)%timeit -n 10000 100 in d%timeit -n 10000 100 in s10000 loops, best of 3: 43.5 ns per loop10000 loops, best of 3: 49.6 ns per loop

dict 的效率略高(占用的空间也多一些)。

3、优化算法时间复杂度

算法的时间复杂度对程序的执行效率影响最大,在 Python 中可以通过选择合适的数据结构来优化时间复杂度,如 list 和 set 查找某一个元素的时间复杂度分别是O(n)和O(1)。不同的场景有不同的优化方式,总得来说,一般有分治,分支界限,贪心,动态规划等思想。

4、减少冗余数据

如用上三角或下三角的方式去保存一个大的对称矩阵。在0元素占大多数的矩阵里使用稀疏矩阵表示。

5、并行编程

因为 GIL 的存在,Python 很难充分利用多核 CPU 的优势。但是,可以通过内置的模块 multiprocessing 实现下面几种并行模式:

多进程:对于 CPU 密集型的程序,可以使用 multiprocessing 的 Process,Pool 等封装好的类,通过多进程的方式实现并行计算。但是因为进程中的通信成本比较大,对于进程之间需要大量数据交互的程序效率未必有大的提高。

多线程:对于 IO 密集型的程序,multiprocessing.dummy 模块使用 multiprocessing 的接口封装 threading,使得多线程编程也变得非常轻松(比如可以使用 Pool 的 map 接口,简洁高效)。

分布式:multiprocessing 中的 Managers 类提供了可以在不同进程之共享数据的方式,可以在此基础上开发出分布式的程序。

不同的业务场景可以选择其中的一种或几种的组合实现程序性能的优化。

6、使用C扩展(Extension)

目前主要有 CPython(python最常见的实现的方式)原生API, ctypes,Cython,cffi三种方式,它们的作用是使得 Python 程序可以调用由C编译成的动态链接库,其特点分别是:

CPython 原生 API: 通过引入 Python.h 头文件,对应的C程序中可以直接使用Python 的数据结构。实现过程相对繁琐,但是有比较大的适用范围。

ctypes: 通常用于封装(wrap)C程序,让纯 Python 程序调用动态链接库(Windows 中的 dll 或 Unix 中的 so 文件)中的函数。如果想要在 python 中使用已经有C类库,使用 ctypes 是很好的选择,有一些基准测试下,python2+ctypes 是性能最好的方式。

Cython: Cython 是 CPython 的超集,用于简化编写C扩展的过程。Cython 的优点是语法简洁,可以很好地兼容 numpy 等包含大量C扩展的库。Cython 的使得场景一般是针对项目中某个算法或过程的优化。在某些测试中,可以有几百倍的性能提升。

cffi: cffi 的就是 ctypes 在 pypy(详见下文)中的实现,同进也兼容 CPython。cffi提供了在 python 使用C类库的方式,可以直接在 python 代码中编写C代码,同时支持链接到已有的C类库。

使用这些优化方式一般是针对已有项目性能瓶颈模块的优化,可以在少量改动原有项目的情况下大幅度地提高整个程序的运行效率。

7、使用性能分析工具

除了上面在 ipython 使用到的 timeit 模块,还有 cProfile。cProfile 的使用方式也非常简单: python -m cProfile filename.py,filename.py 是要运行程序的文件名,可以在标准输出中看到每一个函数被调用的次数和运行的时间,从而找到程序的性能瓶颈,然后可以有针对性地优化。

8、终级大杀器:PyPy

PyPy 是用 RPython(CPython 的子集)实现的 Python,根据官网的基准测试数据,它比 CPython 实现的 Python 要快6倍以上。快的原因是使用了 Just-in-Time(JIT)编译器,即动态编译器,与静态编译器(如gcc,javac等)不同,它是利用程序运行的过程的数据进行优化。由于历史原因,目前 pypy 中还保留着 GIL,不过正在进行的 STM 项目试图将 PyPy 变成没有 GIL 的 Python。

如果 python 程序中含有C扩展(非cffi的方式),JIT 的优化效果会大打折扣,甚至比 CPython 慢(比 Numpy)。所以在 PyPy 中最好用纯 Python 或使用 cffi 扩展。

随着 STM,Numpy 等项目的完善,相信 PyPy 将会替代 CPython。

相关推荐

第九章:Python文件操作与输入输出

9.1文件的基本操作9.1.1打开文件理论知识:在Python中,使用open()函数来打开文件。open()函数接受两个主要参数:文件名和打开模式。打开模式决定了文件如何被使用,常见的模式有:&...

Python的文件处理

一、文件处理的流程1.打开文件,得到文件句柄并赋值给一个变量2.通过句柄对文件进行操作3.关闭文件示例:d=open('abc')data1=d.read()pri...

Python处理文本的25个经典操作

Python处理文本的优势主要体现在其简洁性、功能强大和灵活性。具体来说,Python提供了丰富的库和工具,使得对文件的读写、处理变得轻而易举。简洁的文件操作接口Python通过内置的open()函数...

Python学不会来打我(84)python复制文件操作总结

上一篇文章我们分享了python读写文件的操作,主要用到了open()、read()、write()等方法。这一次是在文件读写的基础之上,我们分享文件的复制。#python##python自学##...

python 文件操作

1.检查目录/文件使用exists()方法来检查是否存在特定路径。如果存在,返回True;如果不存在,则返回False。此功能在os和pathlib模块中均可用,各自的用法如下。#os模块中e...

《文件操作(读写文件)》

一、文件操作基础1.open()函数核心语法file=open("filename.txt",mode="r",encoding="utf-8"...

栋察宇宙(二十一):Python 文件操作全解析

分享乐趣,传播快乐,增长见识,留下美好。亲爱的您,这里是LearingYard学苑!今天小编为大家带来“Python文件操作全解析”欢迎您的访问!Sharethefun,spreadthe...

值得学习练手的70个Python项目(附代码),太实用了

Python丰富的开发生态是它的一大优势,各种第三方库、框架和代码,都是前人造好的“轮子”,能够完成很多操作,让你的开发事半功倍。下面就给大家介绍70个通过Python构建的项目,以此来学习Pytho...

python图形化编程:猜数字的游戏

importrandomnum=random.randint(1,500)running=Truetimes=0##总的次数fromtkinterimport*##导入所有tki...

一文讲清Python Flask的Web编程知识

刚入坑Python做Web开发的新手,还在被配置臃肿、启动繁琐折磨?Flask这轻量级框架最近又火出圈,凭5行代码启动Web服务的极致简洁,让90后程序员小张直呼真香——毕竟他刚用这招把部署时间从半小...

用python 编写一个hello,world

第一种:交互式运行一个hello,world程序:这是写python的第一步,也是学习各类语言的第一步,就是用这种语言写一个hello,world程序.第一步,打开命令行窗口,输入python,第二步...

python编程:如何使用python代码绘制出哪些常见的机器学习图像?

专栏推荐绘图的变量单变量查看单变量最方便的无疑是displot()函数,默认绘制一个直方图,并你核密度估计(KDE)sns.set(color_codes=True)np.random.seed(su...

如何编写快速且更惯用的 Python 代码

Python因其可读性而受到称赞。这使它成为一种很好的第一语言,也是脚本和原型设计的流行选择。在这篇文章中,我们将研究一些可以使您的Python代码更具可读性和惯用性的技术。我不仅仅是pyt...

Python函数式编程的详细分析(代码示例)

本篇文章给大家带来的内容是关于Python函数式编程的详细分析(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。FunctionalProgramming,函数式编程。Py...

编程小白学做题:Python 的经典编程题及详解,附代码和注释(七)

适合Python3+的6道编程练习题(附详解)1.检查字符串是否以指定子串开头题目描述:判断字符串是否以给定子串开头(如"helloworld"以"hello&...

取消回复欢迎 发表评论: