一篇文章教你搞定Python的异常处理
off999 2024-11-19 08:34 19 浏览 0 评论
异常与错误
- 程序错误分类(两类)
- 语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正)
- 逻辑错误(逻辑错误)
#用户输入不完整(比如输入为空)或者输入非法(输入不是数字)
num=input(">>: ")
int(num)
#无法完成计算
res1=1/0
res2=1+'str'
什么是异常
异常就是程序运行时发生错误的信号,在python中,错误触发的异常如下
Python中异常种类
在python中不同的异常可以用不同的类型(python中统一了类与类型,类型即类)去标识,不同的类对象标识不同的异常,一个异常标识一种错
# 触发IndexError
l=['run1','aa']
l[3]
# 触发KeyError
dic={'name':'run1'}
dic['age']
# 触发ValueError
s='hello'
int(s)
常用异常
AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x
IOError 输入/输出异常;基本上是无法打开文件
ImportError 无法引入模块或包;基本上是路径问题或名称错误
IndentationError 语法错误(的子类) ;代码没有正确对齐
IndexError 下标索引超出序列边界,比如当x只有三个元素,却试图访问x[5]
KeyError 试图访问字典里不存在的键
KeyboardInterrupt Ctrl+C被按下
NameError 使用一个还未被赋予对象的变量
SyntaxError Python代码非法,代码不能编译(个人认为这是语法错误,写错了)
TypeError 传入对象类型与要求的不符合
UnboundLocalError 试图访问一个还未被设置的局部变量,基本上是由于另有一个同名的全局变量,
导致你以为正在访问它
ValueError 传入一个调用者不期望的值,即使值的类型是正确的
更多异常
ArithmeticError
AssertionError
AttributeError
BaseException
BufferError
BytesWarning
DeprecationWarning
EnvironmentError
EOFError
Exception
FloatingPointError
FutureWarning
GeneratorExit
ImportError
ImportWarning
IndentationError
IndexError
IOError
KeyboardInterrupt
KeyError
LookupError
MemoryError
NameError
NotImplementedError
OSError
OverflowError
PendingDeprecationWarning
ReferenceError
RuntimeError
RuntimeWarning
StandardError
StopIteration
SyntaxError
SyntaxWarning
SystemError
SystemExit
TabError
TypeError
UnboundLocalError
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
UnicodeWarning
UserWarning
ValueError
Warning
ZeroDivisionError
异常处理
- 异常的定义
- 异常发生之后
- 异常之后的代码就不执行了
- 异常处理的定义
- python解释器检测到错误,触发异常(也允许程序员自己触发异常)
- 程序员编写特定的代码,专门用来捕捉这个异常(这段代码与程序逻辑无关,与异常处理有关)
- 如果捕捉成功则进入另外一个处理分支,执行你为其定制的逻辑,使程序不会崩溃,这就是异常处理
- 关于为什么要进行异常处理
- python解析器去执行程序,检测到了一个错误时,触发异常,异常触发后且没被处理的情况下,程序就在当前异常处终止,后面的代码不会运行,谁会去用一个运行着突然就崩溃的软件。
- 所以必须提供一种异常处理机制来增强你程序的健壮性与容错性
- 关于如何进行异常处理
- 首先须知,异常是由程序的错误引起的,语法上的错误跟异常处理无关,必须在程序运行前就修正
- 使用if判断式
#正常代码
num1=input('>>: ') #输入一个字符串试试
int(num1)
# 使用if判断进行异常处理
#_*_coding:utf-8_*_
num1=input('>>: ') #输入一个字符串试试
if num1.isdigit():
int(num1) #我们的正统程序放到了这里,其余的都属于异常处理范畴
elif num1.isspace():
print('输入的是空格,就执行我这里的逻辑')
elif len(num1) == 0:
print('输入的是空,就执行我这里的逻辑')
else:
print('其他情情况,执行我这里的逻辑')
'''
问题一:
使用if的方式我们只为第一段代码加上了异常处理,但这些if,跟你的代码逻辑并无关系,这样你的代码会因为可读性差而不容易被看懂
问题二:
这只是我们代码中的一个小逻辑,如果类似的逻辑多,那么每一次都需要判断这些内容,就会倒置我们的代码特别冗长。
'''
总结
- if判断式的异常处理只能针对某一段代码,对于不同的代码段的相同类型的错误你需要写重复的if来进行处理。
- 在程序中频繁的写与程序本身无关,与异常处理有关的if,会使得代码可读性极其的差
- if是可以解决异常的,只是存在1,2的问题,所以,千万不要妄下定论if不能用来异常处理。
Python中异常处理的语法结构
- 异常处理基本语法
try:
被检测的代码块
except 异常类型:
try中一旦检测到异常,就执行这个位置的逻辑
- PS:异常类只能用来处理指定的异常情况,如果非指定异常则无法处理。
# 未捕获到异常,程序直接报错
s1 = 'hello'
try:
int(s1)
except IndexError as e:
print e
- 多分支
s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
- 万能异常 在python的异常中,有一个万能异常:Exception,它可以捕获任意异常
s1 = 'hello'
try:
int(s1)
except Exception as e:
print(e)
- PS:慎用Exception
- 如果你想要的效果是,无论出现什么异常,都统一丢弃,或者使用同一段代码逻辑去处理他们,只有一个Exception就足够了。
s1 = 'hello'
try:
int(s1)
except Exception,e:
'丢弃或者执行其他逻辑'
print(e)
#如果你统一用Exception,没错,是可以捕捉所有异常,但意味着你在处理所有异常时都使用同一个逻辑去处理(这里说的逻辑即当前expect下面跟的代码块)
- 如果想要的效果是,对于不同的异常我们需要定制不同的处理逻辑,那就需要用到多分支了。
# 多分支
s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
- 多分支+Exception
s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
except Exception as e: # 如果使用混合形式务必将Exception放于最后
print(e)
- 异常的其他机构
s1 = 'hello'
try:
int(s1)
except IndexError as e:
print(e)
except KeyError as e:
print(e)
except ValueError as e:
print(e)
#except Exception as e:
# print(e)
else:
print('try内代码块没有异常则执行我')
finally:
print('无论异常与否,都会执行该模块,通常是进行清理工作')
- 主动触发异常
try:
raise TypeError('类型错误')
except Exception as e:
print(e)
- 自定义异常
class EvaException(BaseException):
def __init__(self,msg):
self.msg=msg
def __str__(self):
return self.msg
try:
raise EvaException('类型错误')
except EvaException as e:
print(e)
- 断言
# assert 条件
assert 1 == 1
assert 1 == 2
try..except的方式比较if的方式的好处
try..except这种异常处理机制就是取代if那种方式,让你的程序在不牺牲可读性的前提下增强健壮性和容错性
异常处理中为每一个异常定制了异常类型(python中统一了类与类型,类型即类),对于同一种异常,一个except就可以捕捉到,可以同时处理多段代码的异常(无需‘写多个if判断式’)减少了代码,增强了可读性
使用try..except的方式
- 把错误处理和真正的工作分开来
- 代码更易组织,更清晰,复杂的工作任务更容易实现;
- 毫无疑问,更安全了,不至于由于一些小的疏忽而使程序意外崩溃了;
#python##python打卡##电脑编程##我要上头条##Python基础#
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)