百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

听说你会 Python?做完下列试题,你及格了吗?

off999 2024-11-20 20:05 13 浏览 0 评论

新来的徒弟最近觉得 Python 太“简单了”,于是在我面前放肆了一把:“我觉得 Python 是世界上最简单的语言!”。

作为一个 Python 开发者,我必须要给你一点人生经验,不然你不知道天高地厚!于是选了一张满分 100 分的题,然后这篇文章就是记录下做这套题所踩过的坑。



1.列表生成器

描述

下面的代码会报错,为什么?

class A(object):
    x = 1
    gen = (x for _ in xrange(10))  # gen=(x for _ in range(10))
if __name__ == "__main__":
    print(list(A.gen))

答案

这个问题是变量作用域问题,在 gen=(x for _ in xrange(10)) 中 gen 是一个 generator ,在 generator 中变量有自己的一套作用域,与其余作用域空间相互隔离。因此,将会出现这样的 NameError: name 'x' is not defined 的问题,那么解决方案是什么呢?答案是:用 lambda 。

class A(object):
    x = 1
    gen = (lambda x: (x for _ in xrange(10)))(x)  # gen=(x for _ in range(10))
if __name__ == "__main__":
    print(list(A.gen))

2.装饰器

描述

我想写一个类装饰器用来度量函数/方法运行时间

import time
class Timeit(object):
    def __init__(self, func):
        self._wrapped = func
    def __call__(self, *args, **kws):
        start_time = time.time()
        result = self._wrapped(*args, **kws)
        print("elapsed time is %s " % (time.time() - start_time))
        return result

这个装饰器能够运行在普通函数上:

@Timeit
def func():
    time.sleep(1)
    return "invoking function func"
if __name__ == '__main__':
    func()  # output: elapsed time is 1.00044410133


但是运行在方法上会报错,为什么?

class A(object):
    @Timeit
    def func(self):
        time.sleep(1)
        return 'invoking method func'
if __name__ == '__main__':
    a = A()
    a.func()  # Boom!

如果我坚持使用类装饰器,应该如何修改?

答案

使用类装饰器后,在调用 func 函数的过程中其对应的 instance 并不会传递给 __call__ 方法,造成其 mehtod unbound ,那么解决方法是什么呢?描述符赛高

class Timeit(object):
    def __init__(self, func):
        self.func = func
    def __call__(self, *args, **kwargs):
        print('invoking Timer')
    def __get__(self, instance, owner):
        return lambda *args, **kwargs: self.func(instance, *args, **kwargs)

3.Python 调用机制

描述

我们知道 __call__ 方法可以用来重载圆括号调用,好的,以为问题就这么简单?Naive!

class A(object):
    def __call__(self):
        print("invoking __call__ from A!")
if __name__ == "__main__":
    a = A()
    a()  # output: invoking __call__ from A

现在我们可以看到 a() 似乎等价于 a.__call__() ,看起来很 Easy 对吧,好的,我现在想作死,又写出了如下的代码,

a.__call__ = lambda: "invoking __call__ from lambda"
a.__call__()
# output:invoking __call__ from lambda
a()
# output:invoking __call__ from A!

请大佬们解释下,为什么 a() 没有调用出 a.__call__() (此题由 USTC 王子博前辈提出)

答案

原因在于,在 Python 中,新式类( new class )的内建特殊方法,和实例的属性字典是相互隔离的,具体可以看看 Python 官方文档对于这一情况的说明

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception (unlike the equivalent example with old-style classes):

同时官方也给出了一个例子:

class C(object):
    pass
c = C()
c.__len__ = lambda: 5
len(c)
# Traceback (most recent call last):
#  File "", line 1, in 
# TypeError: object of type 'C' has no len()

回到我们的例子上来,当我们在执行 a.__call__=lambda:"invoking __call__ from lambda"时,的确在我们在 a.__dict__ 中新增加了一个 key 为 __call__ 的 item,但是当我们执行 a() 时,因为涉及特殊方法的调用,因此我们的调用过程不会从 a.__dict__ 中寻找属性,而是从 tyee(a).__dict__ 中寻找属性。因此,就会出现如上所述的情况。

4.描述符

描述

我想写一个 Exam 类,其属性 math 为 [0,100] 的整数,若赋值时不在此范围内则抛出异常,我决定用描述符来实现这个需求。

class Grade(object):
    def __init__(self):
        self._score = 0
    def __get__(self, instance, owner):
        return self._score
    def __set__(self, instance, value):
        if 0 <= 0="" 75="" 90="" value="" <="100:" self._score="value" else:="" raise="" valueerror('grade="" must="" be="" between="" and="" 100')="" exam(object):="" math="Grade()" def="" __init__(self,="" math):="" self.math="math" if="" __name__="=" '__main__':="" niche="Exam(math=90)" print(niche.math)="" #="" output="" :="" snake="Exam(math=75)" print(snake.math)="" snake.math="120" output:="" valueerror:grade="" 100!<="" code="">

看起来一切正常。不过这里面有个巨大的问题,尝试说明是什么问题为了解决这个问题,我改写了 Grade 描述符如下:

class Grad(object):
    def __init__(self):
        self._grade_pool = {}
    def __get__(self, instance, owner):
        return self._grade_pool.get(instance, None)
    def __set__(self, instance, value):
        if 0 <= value="" <="100:" _grade_pool="self.__dict__.setdefault('_grade_pool'," {})="" _grade_pool[instance]="value" else:="" raise="" valueerror("fuck")<="" code="">

不过这样会导致更大的问题,请问该怎么解决这个问题?

答案

1.第一个问题的其实很简单,如果你再运行一次 print(niche.math) 你就会发现,输出值是 120 ,那么这是为什么呢?这就要先从 Python 的调用机制说起了。我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。好的,现在回到我们的问题,我们发现,在我们的类 Exam中,其 self.math 的调用过程是,首先在实例化后的实例的 __dict__ 中进行查找,没有找到,接着往上一级,在我们的类 Exam 中进行查找,好的找到了,返回。那么这意味着,我们对于 self.math 的所有操作都是对于类变量 math 的操作。因此造成变量污染的问题。那么该则怎么解决呢?很多同志可能会说,恩,在 __set__ 函数中将值设置到具体的实例字典不就行了。那么这样可不可以呢?答案是,很明显不得行啊,至于为什么,就涉及到我们 Python 描述符的机制了,描述符指的是实现了描述符协议的特殊的类,三个描述符协议指的是 __get__ , ‘set‘ , __delete__ 以及 Python 3.6 中新增的 __set_name__ 方法,其中实现了 __get__ 以及 __set__ / __delete__ / __set_name__ 的是 Data descriptors ,而只实现了 __get__ 的是 Non-Data descriptor 。那么有什么区别呢,前面说了, 我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。 但是,这里没有考虑描述符的因素进去,如果将描述符因素考虑进去,那么正确的表述应该是我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。其中如果在类实例字典中的该属性是一个 Data descriptors ,那么无论实例字典中存在该属性与否,无条件走描述符协议进行调用,在类实例字典中的该属性是一个 Non-Data descriptors ,那么优先调用实例字典中的属性值而不触发描述符协议,如果实例字典中不存在该属性值,那么触发 Non-Data descriptor 的描述符协议。回到之前的问题,我们即使在 __set__ 将具体的属性写入实例字典中,但是由于类字典中存在着 Data descriptors ,因此,我们在调用 math 属性时,依旧会触发描述符协议。

2.经过改良的做法,利用 dict 的 key 唯一性,将具体的值与实例进行绑定,但是同时带来了内存泄露的问题。那么为什么会造成内存泄露呢,首先复习下我们的 dict 的特性,dict 最重要的一个特性,就是凡可 hash 的对象皆可为 key ,dict 通过利用的 hash 值的唯一性(严格意义上来讲并不是唯一,而是其 hash 值碰撞几率极小,近似认定其唯一)来保证 key 的不重复性,同时(敲黑板,重点来了),dict 中的 key 引用是强引用类型,会造成对应对象的引用计数的增加,可能造成对象无法被 gc ,从而产生内存泄露。那么这里该怎么解决呢?两种方法第一种:

class Grad(object):
    def __init__(self):
        import weakref
        self._grade_pool = weakref.WeakKeyDictionary()
    def __get__(self, instance, owner):
        return self._grade_pool.get(instance, None)
    def __set__(self, instance, value):
        if 0 <= value="" <="100:" _grade_pool="self.__dict__.setdefault('_grade_pool'," {})="" _grade_pool[instance]="value" else:="" raise="" valueerror("fuck")<="" code="">

weakref 库中的 WeakKeyDictionary 所产生的字典的 key 对于对象的引用是弱引用类型,其不会造成内存引用计数的增加,因此不会造成内存泄露。同理,如果我们为了避免 value 对于对象的强引用,我们可以使用 WeakValueDictionary 。第二种:在 Python 3.6 中,实现的 PEP 487 提案,为描述符新增加了一个协议,我们可以用其来绑定对应的对象:

class Grad(object):
    def __get__(self, instance, owner):
        return instance.__dict__[self.key]
    def __set__(self, instance, value):
        if 0 <= value="" <="100:" instance.__dict__[self.key]="value" else:="" raise="" valueerror("fuck")="" def="" __set_name__(self,="" owner,="" name):="" self.key="name

这道题涉及的东西比较多,这里给出一点参考链接,invoking-descriptors , Descriptor HowTo Guide , PEP 487 , what`s new in Python 3.6 。

5.Python 继承机制

描述

试求出以下代码的输出结果。

class Init(object):
    def __init__(self, value):
        self.val = value
class Add2(Init):
    def __init__(self, val):
        super(Add2, self).__init__(val)
        self.val += 2
class Mul5(Init):
    def __init__(self, val):
        super(Mul5, self).__init__(val)
        self.val *= 5
class Pro(Mul5, Add2):
    pass
class Incr(Pro):
    csup = super(Pro)
    def __init__(self, val):
        self.csup.__init__(val)
        self.val += 1
p = Incr(5)
print(p.val)

答案

输出是 36 ,具体可以参考 New-style Classes , multiple-inheritance

6. Python 特殊方法

描述

我写了一个通过重载 new 方法来实现单例模式的类。

class Singleton(object):
    _instance = None
    def __new__(cls, *args, **kwargs):
        if cls._instance:
            return cls._instance
        cls._isntance = cv = object.__new__(cls, *args, **kwargs)
        return cv
sin1 = Singleton()
sin2 = Singleton()
print(sin1 is sin2)
# output: True

现在我有一堆类要实现为单例模式,所以我打算照葫芦画瓢写一个元类,这样可以让代码复用:

class SingleMeta(type):
    def __init__(cls, name, bases, dict):
        cls._instance = None
        __new__o = cls.__new__
        def __new__(cls, *args, **kwargs):
            if cls._instance:
                return cls._instance
            cls._instance = cv = __new__o(cls, *args, **kwargs)
            return cv
        cls.__new__ = __new__o
class A(object):
    __metaclass__ = SingleMeta
a1 = A()  # what`s the fuck

哎呀,好气啊,为啥这会报错啊,我明明之前用这种方法给 __getattribute__ 打补丁的,下面这段代码能够捕获一切属性调用并打印参数

class TraceAttribute(type):
    def __init__(cls, name, bases, dict):
        __getattribute__o = cls.__getattribute__
        def __getattribute__(self, *args, **kwargs):
            print('__getattribute__:', args, kwargs)
            return __getattribute__o(self, *args, **kwargs)
        cls.__getattribute__ = __getattribute__
class A(object):  # Python 3 是 class A(object,metaclass=TraceAttribute):
    __metaclass__ = TraceAttribute
    a = 1
    b = 2
a = A()
a.a
# output: __getattribute__:('a',){}
a.b

试解释为什么给 getattribute 打补丁成功,而 new 打补丁失败。如果我坚持使用元类给 new 打补丁来实现单例模式,应该怎么修改?

答案

其实这是最气人的一点,类里的 __new__ 是一个 staticmethod 因此替换的时候必须以 staticmethod 进行替换。答案如下:

class SingleMeta(type):
    def __init__(cls, name, bases, dict):
        cls._instance = None
        __new__o = cls.__new__
        @staticmethod
        def __new__(cls, *args, **kwargs):
            if cls._instance:
                return cls._instance
            cls._instance = cv = __new__o(cls, *args, **kwargs)
            return cv
        cls.__new__ = __new__o
class A(object):
    __metaclass__ = SingleMeta
print(A() is A())  # output: True

结语

小编想说:我是一名python开发工程师,

整理了一套最新的python系统学习教程,

想要这些资料的可以关注私信小编“01”即可(免费分享哦)希望能对你有所帮助

正在学习python的小伙伴或者打算学习的,可以私信小编“01”领取资料!

相关推荐

安装python语言,运行你的第一行代码

#01安装Python访问Python官方(https://www.python.org/),下载并安装最新版本的Python。确保安装过程中勾选“Addpython.exetoPAT...

Python推导式家族深度解析:字典/集合/生成器的艺术

一、为什么需要其他推导式?当你在处理数据时:o需要快速去重→集合推导式o要建立键值映射→字典推导式o处理海量数据→生成器表达式这些场景是列表推导式无法完美解决的,就像工具箱需要不同工...

别再用循环创建字典了!Python推导式让你的代码起飞

当同事还在用for循环吭哧吭哧创建字典时,我早已用推导式完成3个需求了!这个被90%新手忽视的语法,今天让你彻底掌握字典推导式的4大高阶玩法,文末彩蛋教你用1行代码搞定复杂数据转换!基础语法拆解#传...

什么是Python中的生成器推导式?(python生成器的好处)

编程派微信号:codingpy本文作者为NedBatchelder,是一名资深Python工程师,目前就职于在线教育网站Edx。文中蓝色下划线部分可“阅读原文”后点击。Python中有一种紧凑的语法...

Python 列表转换为字符串:实用指南

为什么在Python中将列表转换为字符串?Python列表非常灵活,但它们并非在所有地方都适用。有时你需要以人类可读的格式呈现数据——比如在UI中显示标签或将项目保存到CSV文件。可能还...

生成器表达式和列表推导式(生成器表达式的计算结果)

迭代器的输出有两个很常见的使用方式,1)对每一个元素执行操作,2)选择一个符合条件的元素子集。比如,给定一个字符串列表,你可能想去掉每个字符串尾部的空白字符,或是选出所有包含给定子串的字符串。列表...

python学习——038python中for循环VS列表推导式

在Python中,for循环和列表推导式(ListComprehension)都可以用于创建和处理列表,但它们的语法、性能和适用场景有所不同。以下是两者的详细对比:1.语法结构for循环使用...

python中列表推导式怎么用?(列表 python)

这个问题,我们不妨用近期很火的ChatGPT来试试,来看看人工智能是如何解答的?在Python中,列表解析是一种简洁的方法,用于生成列表。它是一种快速,简洁的方法,可以在一行代码中生成列表,而不需...

Python列表推导式:让你的代码优雅如诗!

每次写for循环都要三四行代码?处理数据时总被嵌套结构绕晕?学会列表推导式,一行代码就能让代码简洁十倍!今天带你解锁这个Python程序员装(偷)逼(懒)神器!一、为什么你需要列表推导式?代码...

python学习——038如何将for循环改写成列表推导式

在Python里,列表推导式是一种能够简洁生成列表的表达式,可用于替换普通的for循环。下面是列表推导式的基本语法和常见应用场景。基本语法result=[]foriteminite...

太牛了!Python 列表推导式,超级总结!这分析总结也太到位了!

Python列表推导式,超级总结!一、基本概念列表推导式是Python中创建列表的一种简洁语法,它允许你在一行代码内生成列表,替代传统的for循环方式。其核心思想是**"对可迭代对...

25-2-Python网络编程-TCP 编程示例

2-TCP编程示例应用程序通常通过“套接字”(socket)向网络发出请求或者应答网络请求,使主机间或者一台计算机上的进程间可以通信。Python语言提供了两种访问网络服务的功能。其中低级别的网络服...

python编程的基础与进阶(周兴富)(python编程基础视频)

前不久我发文:《懂了,if__name=='__main__'》。想不到的是,这个被朋友称之为“读晕了”的文章,其收藏量数百,有效阅读量竟然过万。所谓“有效阅读量”,就是读到尾部才退...

Python 闭包:深入理解函数式编程的核心概念

一、简介在Python编程领域,闭包(Closure)是一个既基础又强大的概念,它不仅是装饰器、回调函数等高级特性的实现基础,更是函数式编程思想的重要体现。理解闭包的工作原理,能够帮助开发者编写出...

Python小白逆袭!7天吃透PyQt6,独立开发超酷桌面应用

PythonGUI编程:PyQt6从入门到实战的全面指南在Python的庞大生态系统中,PyQt6作为一款强大的GUI(GraphicalUserInterface,图形用户界面)编程框架,为开...

取消回复欢迎 发表评论: