百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

常用的 Python 调试工具,Python开发必读

off999 2024-11-23 20:38 17 浏览 0 评论

日志

没错,就是日志。再多强调在你的应用里保留足量的日志的重要性也不为过。你应当对重要的内容打日志。如果你的日志打的足够好的话,单看日志你就能发现问题所在。那样可以节省你大量的时间。

如果一直以来你都在代码里乱用 print 语句,马上停下来。换用logging.debug。以后你还可以继续复用,或是全部停用等等。

跟踪

有时更好的办法是看执行了哪些语句。你可以使用一些IDE的调试器的单步执行,但你需要明确知道你在找那些语句,否则整个过程会进行地非常缓慢。

标准库里面的trace模块,可以打印运行时包含在其中的模块里所有执行到的语句。(就像制作一份项目报告)

python -mtrace –trace script.py

这会产生大量输出(执行到的每一行都会被打印出来,你可能想要用grep过滤那些你感兴趣的模块).

比如:

python -mtrace –trace script.py | egrep '^(mod1.py|mod2.py)'

调试器

以下是如今应该人尽皆知的一个基础介绍:

import pdb

pdb.set_trace() # 开启pdb提示

或者

try:

(一段抛出异常的代码)

except:

import pdb

pdb.pm() # 或者 pdb.post_mortem()

或者(输入 c 开始执行脚本)

python -mpdb script.py

在输入-计算-输出循环(注:REPL,READ-EVAL-PRINT-LOOP的缩写)环境下,可以有如下操作:

c or continue

q or quit

l or list, 显示当前步帧的源码

w or where,回溯调用过程

d or down, 后退一步帧(注:相当于回滚)

u or up, 前进一步帧

(回车), 重复上一条指令

其余的几乎全部指令(还有很少的其他一些命令除外),在当前步帧上当作python代码进行解析。

如果你觉得挑战性还不够的话,可以试下smiley,-它可以给你展示那些变量而且你能使用它来远程追踪程序。

更好的调试器

pdb的直接替代者:

ipdb(easy_install ipdb) – 类似ipython(有自动完成,显示颜色等)

pudb(easy_install pudb) – 基于curses(类似图形界面接口),特别适合浏览源代码

远程调试器

安装方式:

sudo apt-get install winpdb

用下面的方式取代以前的pdb.set_trace():

import rpdb2

rpdb2.start_embedded_debugger("secretpassword")

现在运行winpdb,文件-关联

不喜欢Winpdb?也可以直接包装PDB在TCP之上运行!

这样做:

import loggging

class Rdb(pdb.Pdb):

"""

This will run pdb as a ephemeral telnet service. Once you connect no one

else can connect. On construction this object will block execution till a

client has connected.

Based on https://github.com/tamentis/rpdb I think ...

To use this::

Rdb(4444).set_trace()

Then run: telnet 127.0.0.1 4444

"""

def __init__(self, port=0):

self.old_stdout = sys.stdout

self.old_stdin = sys.stdin

self.listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

self.listen_socket.bind(('0.0.0.0', port))

if not port:

logging.critical("PDB remote session open on: %s", self.listen_socket.getsockname())

print >> sys.__stderr__, "PDB remote session open on:", self.listen_socket.getsockname()

sys.stderr.flush()

self.listen_socket.listen(1)

self.connected_socket, address = self.listen_socket.accept()

self.handle = self.connected_socket.makefile('rw')

pdb.Pdb.__init__(self, completekey='tab', stdin=self.handle, stdout=self.handle)

sys.stdout = sys.stdin = self.handle

def do_continue(self, arg):

sys.stdout = self.old_stdout

sys.stdin = self.old_stdin

self.handle.close()

self.connected_socket.close()

self.listen_socket.close()

self.set_continue()

return 1

do_c = do_cont = do_continue

def set_trace():

"""

Opens a remote PDB on first available port.

"""

rdb = Rdb()

rdb.set_trace()

只想要一个REPL环境?试试IPython如何?

如果你不需要一个完整齐全的调试器,那就只需要用一下的方式启动一个IPython即可:

import IPython

IPython.embed()

标准linux工具

我常常惊讶于它们竟然远未被充分利用。你能用这些工具解决很大范围内的问题:从性能问题(太多的系统调用,内存分配等等)到死锁,网络问题,磁盘问题等等。

其中最有用的是最直接的strace,只需要运行 sudo strace -p 12345 或者 strace -f 指令(-f 即同时追踪fork出来的子进程),这就行了。输出一般会非常大,所以你可能想要把它重定向到一个文件以便作更多的分析(只需要加上 &> 文件名)。

再就是ltrace,有点类似strace,不同的是,它输出的是库函数调用。参数大体相同。

还有lsof 用来指出你在ltrace/strace中看到的句柄数值的意义。比如:

lsof -p 12345

更好的跟踪

使用简单而可以做很多事情-人人都该装上htop!

sudo apt-get install htop

sudo htop

现在找到那些你想要的进程,再输入:

s - 代表系统调用过程(类似strace)

L - 代表库调用过程(类似ltrace)

l - 代表lsof

监控

没有好的持续的服务器监控,但是如果你曾遇到一些很诡异的情况,诸如为什么一切都运行的那么慢,那些系统资源都干什么去了,。。。等这些问题,想弄明白却又 无处下手之际,不必动用iotop,iftop,htop,iostat,vmstat这些工具,就用dstat吧!它可以做之前我们提过的大部分工作可 以做的事情,而且也许可以做的更好!

它会用一种紧凑的,代码高亮的方式(不同于iostat,vmstat)向你持续展示数据,你还经常可以看到过去的数据(不同于iftop,iostop,htop)。

只需运行:

dstat --cpu --io --mem --net --load --fs --vm --disk-util --disk-tps --freespace --swap --top-io --top-bio-adv

很可能有一种更简短的方式来写上面这条命令,

这是一个相当复杂而又强大的工具,但是这里我只提到了一些基本的内容(安装以及基础的命令)

sudo apt-get install gdb python-dbg

zcat /usr/share/doc/python2.7/gdbinit.gz > ~/.gdbinit

用python2.7-dbg 运行程序:

sudo gdb -p 12345

现在使用:

bt - 堆栈跟踪(C 级别)

pystack - python 堆栈跟踪,不幸的是你需要有~/.gdbinit 并且使用python-dbg

c - 继续

发生段错误?用faulthandler !

python 3.3版本以后新增的一个很棒的功能,可以向后移植到python2.x版本。只需要运行下面的语句,你就可以大抵知道什么原因引起来段错误。

import faulthandler

faulthandler.enable()

内存泄露

嗯,这种情况下有很多的工具可以使用,其中有一些专门针对WSGI的程序比如Dozer,但是我最喜欢的当然是objgraph。使用简单方便,让人惊讶!

它没有集成WSGI或者其他,所以你需要自己去发现运行代码的方法,像下面这样:

import objgraph

objs = objgraph.by_type("Request")[:15]

objgraph.show_backrefs(objs, max_depth=20, highlight=lambda v: v in objs,

filename="/tmp/graph.png")

Graph written to /tmp/objgraph-zbdM4z.dot (107 nodes)

Image generated as /tmp/graph.png

你会得到像这样一张图(注意:它非常大)。你也可以得到一张点输出。

内存使用

有时你想少用些内存。更少的内存分配常常可以使程序执行的更快,更好,用户希望内存合适好用)

有许多可用的工具,但在我看来最好用的是pytracemalloc。与其他工具相比,它开销非常小(不需要依赖于严重影响速度的sys.settrace)而且输出非常详尽。但安装起来比较痛苦,你需要重新编译python,但有了apt,做起来也非常容易。

只需要运行这些命令然后去吃顿午餐或者干点别的:

apt-get source python2.7

cd python2.7-*

wget? https://github.com/wyplay/pytracemalloc/raw/master/python2.7_track_free_list.patch

patch -p1 < python2.7_track_free_list.patch

debuild -us -uc

cd ..

sudo dpkg -i python2.7-minimal_2.7*.deb python2.7-dev_*.deb

接着安装pytracemalloc (注意如果你在一个virtualenv虚拟环境下操作,你需要在重新安装python后再次重建 – 只需要运行 virtualenv myenv)

pip install pytracemalloc

现在像下面这样在代码里包装你的应用程序

import tracemalloc, time

tracemalloc.enable()

top = tracemalloc.DisplayTop(

5000, # log the top 5000 locations

file=open('/tmp/memory-profile-%s' % time.time(), "w")

)

top.show_lineno = True

try:

# code that needs to be traced

finally:

top.display()

输出会像这样:

2013-05-31 18:05:07: Top 5000 allocations per file and line

#1: .../site-packages/billiard/_connection.py:198: size=1288 KiB, count=70 (+0),

average=18 KiB

#2: .../site-packages/billiard/_connection.py:199: size=1288 KiB, count=70 (+0),

average=18 KiB

#3: .../python2.7/importlib/__init__.py:37: size=459 KiB, count=5958 (+0),

average=78 B

#4: .../site-packages/amqp/transport.py:232: size=217 KiB, count=6960 (+0),

average=32 B

#5: .../site-packages/amqp/transport.py:231: size=206 KiB, count=8798 (+0),

average=24 B

#6: .../site-packages/amqp/serialization.py:210: size=199 KiB, count=822 (+0),

average=248 B

#7: .../lib/python2.7/socket.py:224: size=179 KiB, count=5947 (+0), average=30

B

#8: .../celery/utils/term.py:89: size=172 KiB, count=1953 (+0), average=90 B

#9: .../site-packages/kombu/connection.py:281: size=153 KiB, count=2400 (+0),

average=65 B

#10: .../site-packages/amqp/serialization.py:462: size=147 KiB, count=4704

(+0), average=32 B

更多技巧请《转发 + 关注》哦!

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: