常用的 Python 调试工具,Python开发必读
off999 2024-11-23 20:38 17 浏览 0 评论
日志
没错,就是日志。再多强调在你的应用里保留足量的日志的重要性也不为过。你应当对重要的内容打日志。如果你的日志打的足够好的话,单看日志你就能发现问题所在。那样可以节省你大量的时间。
如果一直以来你都在代码里乱用 print 语句,马上停下来。换用logging.debug。以后你还可以继续复用,或是全部停用等等。
跟踪
有时更好的办法是看执行了哪些语句。你可以使用一些IDE的调试器的单步执行,但你需要明确知道你在找那些语句,否则整个过程会进行地非常缓慢。
标准库里面的trace模块,可以打印运行时包含在其中的模块里所有执行到的语句。(就像制作一份项目报告)
python -mtrace –trace script.py
这会产生大量输出(执行到的每一行都会被打印出来,你可能想要用grep过滤那些你感兴趣的模块).
比如:
python -mtrace –trace script.py | egrep '^(mod1.py|mod2.py)'
调试器
以下是如今应该人尽皆知的一个基础介绍:
import pdb
pdb.set_trace() # 开启pdb提示
或者
try:
(一段抛出异常的代码)
except:
import pdb
pdb.pm() # 或者 pdb.post_mortem()
或者(输入 c 开始执行脚本)
python -mpdb script.py
在输入-计算-输出循环(注:REPL,READ-EVAL-PRINT-LOOP的缩写)环境下,可以有如下操作:
c or continue
q or quit
l or list, 显示当前步帧的源码
w or where,回溯调用过程
d or down, 后退一步帧(注:相当于回滚)
u or up, 前进一步帧
(回车), 重复上一条指令
其余的几乎全部指令(还有很少的其他一些命令除外),在当前步帧上当作python代码进行解析。
如果你觉得挑战性还不够的话,可以试下smiley,-它可以给你展示那些变量而且你能使用它来远程追踪程序。
更好的调试器
pdb的直接替代者:
ipdb(easy_install ipdb) – 类似ipython(有自动完成,显示颜色等)
pudb(easy_install pudb) – 基于curses(类似图形界面接口),特别适合浏览源代码
远程调试器
安装方式:
sudo apt-get install winpdb
用下面的方式取代以前的pdb.set_trace():
import rpdb2
rpdb2.start_embedded_debugger("secretpassword")
现在运行winpdb,文件-关联
不喜欢Winpdb?也可以直接包装PDB在TCP之上运行!
这样做:
import loggging
class Rdb(pdb.Pdb):
"""
This will run pdb as a ephemeral telnet service. Once you connect no one
else can connect. On construction this object will block execution till a
client has connected.
Based on https://github.com/tamentis/rpdb I think ...
To use this::
Rdb(4444).set_trace()
Then run: telnet 127.0.0.1 4444
"""
def __init__(self, port=0):
self.old_stdout = sys.stdout
self.old_stdin = sys.stdin
self.listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.listen_socket.bind(('0.0.0.0', port))
if not port:
logging.critical("PDB remote session open on: %s", self.listen_socket.getsockname())
print >> sys.__stderr__, "PDB remote session open on:", self.listen_socket.getsockname()
sys.stderr.flush()
self.listen_socket.listen(1)
self.connected_socket, address = self.listen_socket.accept()
self.handle = self.connected_socket.makefile('rw')
pdb.Pdb.__init__(self, completekey='tab', stdin=self.handle, stdout=self.handle)
sys.stdout = sys.stdin = self.handle
def do_continue(self, arg):
sys.stdout = self.old_stdout
sys.stdin = self.old_stdin
self.handle.close()
self.connected_socket.close()
self.listen_socket.close()
self.set_continue()
return 1
do_c = do_cont = do_continue
def set_trace():
"""
Opens a remote PDB on first available port.
"""
rdb = Rdb()
rdb.set_trace()
只想要一个REPL环境?试试IPython如何?
如果你不需要一个完整齐全的调试器,那就只需要用一下的方式启动一个IPython即可:
import IPython
IPython.embed()
标准linux工具
我常常惊讶于它们竟然远未被充分利用。你能用这些工具解决很大范围内的问题:从性能问题(太多的系统调用,内存分配等等)到死锁,网络问题,磁盘问题等等。
其中最有用的是最直接的strace,只需要运行 sudo strace -p 12345 或者 strace -f 指令(-f 即同时追踪fork出来的子进程),这就行了。输出一般会非常大,所以你可能想要把它重定向到一个文件以便作更多的分析(只需要加上 &> 文件名)。
再就是ltrace,有点类似strace,不同的是,它输出的是库函数调用。参数大体相同。
还有lsof 用来指出你在ltrace/strace中看到的句柄数值的意义。比如:
lsof -p 12345
更好的跟踪
使用简单而可以做很多事情-人人都该装上htop!
sudo apt-get install htop
sudo htop
现在找到那些你想要的进程,再输入:
s - 代表系统调用过程(类似strace)
L - 代表库调用过程(类似ltrace)
l - 代表lsof
监控
没有好的持续的服务器监控,但是如果你曾遇到一些很诡异的情况,诸如为什么一切都运行的那么慢,那些系统资源都干什么去了,。。。等这些问题,想弄明白却又 无处下手之际,不必动用iotop,iftop,htop,iostat,vmstat这些工具,就用dstat吧!它可以做之前我们提过的大部分工作可 以做的事情,而且也许可以做的更好!
它会用一种紧凑的,代码高亮的方式(不同于iostat,vmstat)向你持续展示数据,你还经常可以看到过去的数据(不同于iftop,iostop,htop)。
只需运行:
dstat --cpu --io --mem --net --load --fs --vm --disk-util --disk-tps --freespace --swap --top-io --top-bio-adv
很可能有一种更简短的方式来写上面这条命令,
这是一个相当复杂而又强大的工具,但是这里我只提到了一些基本的内容(安装以及基础的命令)
sudo apt-get install gdb python-dbg
zcat /usr/share/doc/python2.7/gdbinit.gz > ~/.gdbinit
用python2.7-dbg 运行程序:
sudo gdb -p 12345
现在使用:
bt - 堆栈跟踪(C 级别)
pystack - python 堆栈跟踪,不幸的是你需要有~/.gdbinit 并且使用python-dbg
c - 继续
发生段错误?用faulthandler !
python 3.3版本以后新增的一个很棒的功能,可以向后移植到python2.x版本。只需要运行下面的语句,你就可以大抵知道什么原因引起来段错误。
import faulthandler
faulthandler.enable()
内存泄露
嗯,这种情况下有很多的工具可以使用,其中有一些专门针对WSGI的程序比如Dozer,但是我最喜欢的当然是objgraph。使用简单方便,让人惊讶!
它没有集成WSGI或者其他,所以你需要自己去发现运行代码的方法,像下面这样:
import objgraph
objs = objgraph.by_type("Request")[:15]
objgraph.show_backrefs(objs, max_depth=20, highlight=lambda v: v in objs,
filename="/tmp/graph.png")
Graph written to /tmp/objgraph-zbdM4z.dot (107 nodes)
Image generated as /tmp/graph.png
你会得到像这样一张图(注意:它非常大)。你也可以得到一张点输出。
内存使用
有时你想少用些内存。更少的内存分配常常可以使程序执行的更快,更好,用户希望内存合适好用)
有许多可用的工具,但在我看来最好用的是pytracemalloc。与其他工具相比,它开销非常小(不需要依赖于严重影响速度的sys.settrace)而且输出非常详尽。但安装起来比较痛苦,你需要重新编译python,但有了apt,做起来也非常容易。
只需要运行这些命令然后去吃顿午餐或者干点别的:
apt-get source python2.7
cd python2.7-*
wget? https://github.com/wyplay/pytracemalloc/raw/master/python2.7_track_free_list.patch
patch -p1 < python2.7_track_free_list.patch
debuild -us -uc
cd ..
sudo dpkg -i python2.7-minimal_2.7*.deb python2.7-dev_*.deb
接着安装pytracemalloc (注意如果你在一个virtualenv虚拟环境下操作,你需要在重新安装python后再次重建 – 只需要运行 virtualenv myenv)
pip install pytracemalloc
现在像下面这样在代码里包装你的应用程序
import tracemalloc, time
tracemalloc.enable()
top = tracemalloc.DisplayTop(
5000, # log the top 5000 locations
file=open('/tmp/memory-profile-%s' % time.time(), "w")
)
top.show_lineno = True
try:
# code that needs to be traced
finally:
top.display()
输出会像这样:
2013-05-31 18:05:07: Top 5000 allocations per file and line
#1: .../site-packages/billiard/_connection.py:198: size=1288 KiB, count=70 (+0),
average=18 KiB
#2: .../site-packages/billiard/_connection.py:199: size=1288 KiB, count=70 (+0),
average=18 KiB
#3: .../python2.7/importlib/__init__.py:37: size=459 KiB, count=5958 (+0),
average=78 B
#4: .../site-packages/amqp/transport.py:232: size=217 KiB, count=6960 (+0),
average=32 B
#5: .../site-packages/amqp/transport.py:231: size=206 KiB, count=8798 (+0),
average=24 B
#6: .../site-packages/amqp/serialization.py:210: size=199 KiB, count=822 (+0),
average=248 B
#7: .../lib/python2.7/socket.py:224: size=179 KiB, count=5947 (+0), average=30
B
#8: .../celery/utils/term.py:89: size=172 KiB, count=1953 (+0), average=90 B
#9: .../site-packages/kombu/connection.py:281: size=153 KiB, count=2400 (+0),
average=65 B
#10: .../site-packages/amqp/serialization.py:462: size=147 KiB, count=4704
(+0), average=32 B
…
更多技巧请《转发 + 关注》哦!
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
