百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

测试开发日记:python代码调试神器,工作提效利器

off999 2024-11-23 20:38 15 浏览 0 评论

在程序开发过程中,代码的运行往往会和我们预期的结果有所差别。于是,我们需要清楚代码运行过程中到底发生了什么?代码哪些模块运行了,哪些模块没有运行?输出的局部变量是什么样的。我们一般会加一些调试语句,比如加一些print或者log。代码少还好说,如果是大型项目,面对众多 print 的输出结果,可能不太好定位。下面推荐python的PySnooper包

PySnooper 是个什么东西?

PySnooper是一款成熟的调试器,与logging和iceream的作用类似,可以通过pip install PySnooper安装

为什么PySnooper能从其他智能调试工具中脱颖而出?

因为你可以在不需要进行任何设置的情况下将其用于糟糕的、庞大的企业代码库中。


PySnooper主要作用

1、重定向到日志

import pysnooper
@pysnooper.snoop(output='../debug.log')
def demo_func():
    dict_list = dict()
    dict_list["name"] = "dyf"
    dict_list["age"] = 18
    dict_list["gender"] = "female"
    return dict_list


demo_func()

2、跟踪非局部变量

跟踪非局部变量值 PySnooper 是以函数为单位进行调试的,它默认只会跟踪函数体内的局部变量,若想跟踪全局变量,可以给 pysnooper.snoop() 加上 watch 参数


import pysnooper


out = {"foo": "bar"}
@pysnooper.snoop(watch='out["foo"]')
def demo_func():
    dict_list = dict()
    dict_list["name"] = "dyf"
    dict_list["age"] = 18
    dict_list["gender"] = "female"
    return dict_list
demo_func()

和watch 相对的,pysnooper.snoop() 还可以接收一个函数 watch_explode,表示除了这几个参数外的其他所有全局变量都监控。

@pysnooper.snoop(watch_explode=('foo', 'bar'))
def demo_func():
    dict_list = dict()
    dict_list["name"] = "dyf"
    dict_list["age"] = 18
    dict_list["gender"] = "female"
    return dict_list
demo_func()

3、设置跟踪函数的深度

#当你使用 PySnooper 调试某个函数时,若该函数中还调用了其他函数,PySnooper 是不会傻傻的跟踪进去的。如果你想继续跟踪该函数中调用的其他函数,可以通过指定 depth 参数来,设置跟踪深度(不指定的话默认为 1)

# 跟踪函数中调用其他函数的执行过程
@pysnooper.snoop(depth=2)  
def demo_func_new():
    return '我是一个函数'


@pysnooper.snoop(depth=2)
def demo_func():
    demo = demo_func_new()
    print(demo)
    dict_list = dict()
    dict_list["name"] = "dyf"
    dict_list["age"] = 18
    dict_list["gender"] = "female"
    return dict_list
demo_func()

4、设置调试日志的前缀

#当你在使用 PySnooper 跟踪多个函数时,调试的日志会显得杂乱无章,不方便查看。在这种情况下,PySnooper 提供了一个参数,方便你为不同的函数设置不同的标志,方便查看日志时进行区分


#4、设置调试日志的前缀
@pysnooper.snoop(output="../debug.log", prefix="demo_func: ")

5、设置最大的输出长度

默认情况下,PySnooper 输出的变量和异常信息,如果超过 100 个字符,被会截断为 100 个字符。当然你也可以通过指定参数 进行修改

@pysnooper.snoop(max_variable_length=200)             # 限制长度为200
@pysnooper.snoop(max_variable_length=None)            # 不限制长度

6、支持多线程调试模式

PySnooper 同样支持多线程的调试,通过设置参数 thread_info=True,它就会在日志中打印出是在哪个线程对变量进行的修改。

如果感觉文章对你有帮助的话可以点个关注,欢迎关注公众号:橙好测试开发,可以免费获得测试开发学习资料!


相关推荐

Python开发管理神器--UV 使用教程:从安装到项目管理

UV是一个用Rust编写的高效Python包和项目管理工具,提供了比传统工具更快的速度和更强的功能。本文将指导你如何使用UV从安装到运行一个Python项目。重点:它可以独立安装,可...

python入门-Day 26: 优化与调试(python优化方法)

优化与调试,内容包括处理模型运行中的常见问题(内存、依赖)、调整参数(如最大生成长度),以及练习改进Day25的文本生成结果。我会设计一个结构化的任务,帮助你掌握优化和调试技巧,同时提升模型性能...

Python安装(python安装发生严重错误)

Windows系统1.安装python1.1下载Python安装包打开官方网站:https://www.python.org/downloads/点击"DownloadPython3.1...

UV 上手指南:Python 项目环境/包管理新选择

如果你是一位Python开发者,曾因pipinstall的安装速度而感到沮丧,或者希望Python的依赖管理能够像Node.js那样高效顺滑,那么UV可能正是你所需要的工具。UV...

uv——Python开发栈中的高效全能小工具

每天写Python代码的同学,肯定都离不开pip、virtualenv、Poetry等基础工具,但是对这些工具可能是又恨又离不开。那么有什么好的替代呢,虫虫今天就给大家介绍一个替代他们的小工具uv,一...

使用Refurb让你的Python代码更加优秀

还在担心你写的Python代码是否专业,是否符合规范吗?这里介绍一个Python代码优化库Refurb,使用它可以给你的代码提出更加专业的建议,让你的代码更加的可读,规范和专业。下面简单介绍这个库的使...

【ai】dify+python开发AI八字排盘插件

Dify插件是什么?你可以将Dify插件想象成赋予AI应用增强感知和执行能力的模块化组件。它们使得将外部服务、自定义功能以及专用工具以”即插即用”的简洁方式集成到基于Dify构建的AI...

零基础AI开发系列教程:Dify升级指南

Dify近期发布很是频繁,基本两三天一个版本。值得肯定的是优化和改进了很多问题,但是官方的升级文档有点分散,也有点乱。我这里整理了一个升级文档供大家参考,如果还没有升级到新版本的小伙伴,可以按照我的文...

升级到PyTorch 2.0的技巧总结(如何更新pytorch版本)

来源:DeepHubIMBA本文约6400字,建议阅读12分钟在本文将演示PyTorch2.0新功能的使用,以及介绍在使用它时可能遇到的一些问题。PyTorch2.0发布也有一段时间了,大家...

dify 1.6.0版本发布解读:引入MCP支持与多项核心优化升级指南详解

2025年7月10日,dify发布了1.6.0版本。这是一次功能深度升级与性能优化的综合性更新,标志着dify在技术规范支持、操作体验以及系统稳定性方面迈出了重要的一步。本文将从核心新特性、功能增强、...

Python教程(十四):列表(List)(python列表方法总结)

昨天,我们学习了变量作用域,理解了局部和全局变量的概念。今天,我们将开始探索Python的数据结构,从最常用的**列表(List)**开始。列表是Python中最灵活、最常用的数据结构,它可以存储不同...

Python列表操作(python列表有哪些基本操作)

Python添加列表4分钟阅读在Python操作列表有各种方法。例如–简单地将一个列表的元素附加到for循环中另一个列表的尾部,或使用+/*运算符、列表推导、extend()和i...

Python字符串变形术:replace替换+join连接,10分钟掌握核心操作

字符串替换魔法:replace()实战手册核心价值:一键更新文本内容,精准控制替换范围#基础替换:Python变Javas="hellopython"print(s.re...

python集合set() 数据增册改查统计序循常用方法和数学计算

概念特点定义和创建常用操作集合间的关系集合数学操作集合生成式遍历概念:可变、无序、不重复的序列数据容器特点:无序,不支持下标唯一性,可以删除重复数据可修改定义和创建赋值法:语法:s={x,....

Python列表方法append和extend的区别

在Python编程中,列表是一种非常常用的数据结构。而列表有两个方法append()和extend(),它们看起来有点相似,但实际上有着明显的区别。今天咱们就来好好唠唠这俩方法到底有啥不同。基本区别a...

取消回复欢迎 发表评论: