百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

用PyTorch部署模型

off999 2024-11-25 15:54 16 浏览 0 评论

作者:Francesco Zuppichini

编译:ronghuaiyang

导读

演示了使用PyTorch最近发布的新工具torchserve来进行PyTorch模型的部署。

最近,PyTorch推出了名为torchserve.的新生产框架来为模型提供服务。我们看一下今天的roadmap:

1、使用Docker安装

2、导出模型

3、定义handler

4、保存模型

为了展示torchserve,我们将提供一个经过全面训练的ResNet34进行图像分类的服务。

使用Docker安装

官方文档:https://github.com/pytorch/serve/blob/master/README.md##install-torchserve

安装torchserve最好的方法是使用docker。你只需要把镜像拉下来。

可以使用以下命令保存最新的镜像。

docker pull pytorch/torchserve:latest

所有可用的tags:https://hub.docker.com/r/pytorch/torchserve/tags

关于docker和torchserve的更多信息:https://github.com/pytorch/serve#quick-start-with-docker

Handlers

官方文档:https://github.com/pytorch/serve/blob/master/docs/custom_service.md

处理程序负责使用模型对一个或多个HTTP请求进行预测。

默认 handlers

Torchserve支持以下默认 handlers

  1. image_classifier
  2. object_detector
  3. text_classifier
  4. image_segmenter

但是请记住,它们都不支持batching请求!

自定义 handlers

torchserve提供了一个丰富的接口,可以做几乎所有你想做的事情。一个Handler是一个必须有三个函数的类。

  • preprocess
  • inference
  • postprocess

你可以创建你自己的类或者子类BaseHandler。子类化BaseHandler 的主要优点是可以在self.model上访问加载的模型。下面的代码片段展示了如何子类化BaseHandler。

回到图像分类的例子。我们需要

  • 从每个请求中获取图像并对其进行预处理
  • 从模型中得到预测
  • 发送回一个响应

预处理

.preprocess函数接受请求数组。假设我们正在向服务器发送一个图像,可以从请求的data或body字段访问序列化的图像。因此,我们可以遍历所有请求并单独预处理每个图像。完整的代码如下所示。

self.transform是我们的预处理变换,没什么花哨的。对于在ImageNet上训练的模型来说,这是一个经典的预处理步骤。

在我们对每个请求中的每个图像进行预处理之后,我们将它们连接起来创建一个pytorch张量。

推理

这一步很简单,我们从 .preprocess得到张量。然后对每幅图像提取预测结果。

后处理

现在我们有了对每个图像的预测,我们需要向客户返回一些内容。Torchserve总是返回一个数组。BaseHandler也会自动打开一个.json 文件带有index -> label的映射(稍后我们将看到如何提供这样的文件),并将其存储self.mapping中。我们可以为每个预测返回一个字典数组,其中包含label和index 的类别。

把所有的东西打包到一起,我们的handler是这样的:

因为所有的处理逻辑都封装在一个类中,所以你可以轻松地对它进行单元测试!

导出你的模型

官方文档:https://github.com/pytorch/serve/tree/master/model-archiver#creating-a-model-archive

Torchserve 需要提供一个.mar文件,简而言之,该文件只是把你的模型和所有依赖打包在一起。要进行打包,首先需要导出经过训练的模型。

导出模型

有三种方法可以导出torchserve的模型。到目前为止,我发现的最好的方法是trace模型并存储结果。这样我们就不需要向torchserve添加任何额外的文件。

让我们来看一个例子,我们将部署一个经过充分训练的ResNet34模型。

按照顺序,我们:

  • 加载模型
  • 创建一个dummy输入
  • 使用torch.jit.trace来trace模型的输入
  • 保存模型

创建 .mar 文件

官方文档:https://github.com/pytorch/serve/blob/master/model-archiver/README.md

你需要安装torch-model-archiver

git clone https://github.com/pytorch/serve.git
cd serve/model-archiver
pip install .

然后,我们准备好通过使用下面的命令来创建.mar文件。

torch-model-archiver --model-name resnet34 \--version 1.0 \--serialized-file resnet34.pt \--extra-files ./index_to_name.json,./MyHandler.py \--handler my_handler.py  \--export-path model-store -f

按照顺序。变量--model-name定义了模型的最终名称。这是非常重要的,因为它将是endpoint的名称空间,负责进行预测。你还可以指定一个--version。--serialized-file指向我们之前创建的存储的 .pt模型。--handler 是一个python文件,我们在其中调用我们的自定义handler。一般来说,是这样的:

它暴露了一个handle函数,我们从该函数调用自定义handler中的方法。你可以使用默认名称来使用默认handler(例如,--handler image_classifier)。

在--extra-files中,你需要将路径传递给你的handlers正在使用的所有文件。在本例中,我们必须向.json文件中添加路径。使用所有人类可读标签名称,并在MyHandler.py 中定义每个类别。

如果你传递一个index_to_name.json文件,它将自动加载到handler ,并通过self.mapping访问。

--export-path就是 .mar存放的地方,我还添加了-f来覆盖原有的文件。

如果一切顺利的话,你可以看到resnet34.mar存放在./model-store路径中。

用模型进行服务

这是一个简单的步骤,我们可以运行带有所有必需参数的torchserve docker容器。

docker run --rm -it \-p 3000:8080 -p 3001:8081 \-v $(pwd)/model-store:/home/model-server/model-store pytorch/torchserve:0.1-cpu \torchserve --start --model-store model-store --models resnet34=resnet34.mar

我将容器端口8080和8081分别绑定到3000和3001(8080/8081已经在我的机器中使用)。然后,我从./model-store 创建一个volume。最后,我通过padding model-store并通过key-value列表的方式指定模型的名称来调用torchserve。

这里,torchserve有一个endpoint /predictions/resnet34,我们可以通过发送图像来预测。这可以使用curl来实现。

curl -X POST http://127.0.0.1:3000/predictions/resnet34 -T inputs/kitten.jpg

回复:

{
  "label": "tiger_cat",
  "index": 282
}

工作正常!

总结

  • 使用docker安装torchserve
  • 默认以及自定义handlers
  • 模型打包生成
  • 使用docker提供模型服务


英文原文:https://towardsdatascience.com/deploy-models-and-create-custom-handlers-in-torchserve-fc2d048fbe91

相关推荐

推荐一款Python的GUI可视化工具(python 可视化工具)

在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...

教你用Python绘制谷歌浏览器的3种图标

前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....

小白学Python笔记:第二章 Python安装

Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...

一文吃透Python虚拟环境(python虚拟环境安装和配置)

摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...

小白也可以玩的Python爬虫库,收藏一下

最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...

python环境安装+配置教程(python安装后怎么配置环境变量)

安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...

colorama,一个超好用的 Python 库!

大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...

python制作仪表盘图(python绘制仪表盘)

今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...

总结90条写Python程序的建议(python写作)

  1.首先  建议1、理解Pythonic概念—-详见Python中的《Python之禅》  建议2、编写Pythonic代码  (1)避免不规范代码,比如只用大小写区分变量、使用容易...

[oeasy]python0137_相加运算_python之禅_import_this_显式转化

变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...

Python入门学习记录之一:变量(python中变量的规则)

写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...

掌握Python的"魔法":特殊方法与属性完全指南

在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...

11个Python技巧 不Pythonic 实用大于纯粹

虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...

Python 从入门到精通 第三课 诗意的Python之禅

导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...

取消回复欢迎 发表评论: