机器学习 | 算法笔记(四)- 决策树算法以及代码实现
off999 2024-11-26 07:23 24 浏览 0 评论
概述
上一篇讲述了《机器学习 | 算法笔记(三)- 支持向量机算法以及代码实现》,本篇讲述机器学习算法决策树,内容包括模型介绍及代码实现。
决策树
决策树(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。
优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配的问题。
使用数据类型:数值型和标称型。
划分数据集的大原则是:将无序的数据变得更加有序。
我们可以使用多种方法划分数据集,但是每种方法都有各自的优缺点。于是我们这么想,如果我们能测量数据的复杂度,对比按不同特征分类后的数据复杂度,若按某一特征分类后复杂度减少的更多,那么这个特征即为最佳分类特征。
下面,我们就对以下表格中的西瓜样本构建决策树模型。
Claude Shannon 定义了熵(entropy)和信息增益(information gain)。
用熵来表示信息的复杂度,熵越大,则信息越复杂。
样本集合D中第k类样本所占的比例(k=1,2,...,|Y|),|Y|为样本分类的个数,则D的信息熵为:
Ent(D)的值越小,则D的纯度越高。直观理解一下:假设样本集合有2个分类,每类样本的比例为1/2,Ent(D)=1;只有一个分类,Ent(D)= 0,显然后者比前者的纯度高。
在西瓜样本集中,共有17个样本,其中正样本8个,负样本9个,样本集的信息熵为:
使用属性a对样本集D进行划分所获得的“信息增益”的计算方法是,用样本集的总信息熵减去属性a的每个分支的信息熵与权重(该分支的样本数除以总样本数)的乘积,通常,信息增益越大,意味着用属性a进行划分所获得的“纯度提升”越大。因此,优先选择信息增益最大的属性来划分。
同理也可以计算出其他几个属性的信息增益,选择信息增益最大的属性作为根节点来进行划分,然后再对每个分支做进一步划分。
用python构造决策树基本流程
ID3算法与决策树的流程
(1)数据准备:需要对数值型数据进行离散化
(2)ID3算法构建决策树:
- 如果数据集类别完全相同,则停止划分
- 否则,继续划分决策树:
计算信息熵和信息增益来选择最好的数据集划分方法;划分数据集创建分支节点:对每个分支进行判定是否类别相同,如果相同停止划分,不同按照上述方法进行划分。
通常一棵决策树包含一个根节点、若干个分支节点和若干个叶子节点,叶子节点对应决策结果(如好瓜或坏瓜),根节点和分支节点对应一个属性测试(如色泽=?),每个结点包含的样本集合根据属性测试的结果划分到子节点中。
我们对整个训练集选择的最优划分属性就是根节点,第一次划分后,数据被向下传递到树分支的下一个节点,再这个节点我们可以再次划分数据,构建决策树是一个递归的过程,而递归结束的条件是:所有属性都被遍历完,或者每个分支下的所有样本都属于同一类。
还有一种情况就是当划分到一个节点,该节点对应的属性取值都相同,而样本的类别却不同,这时就把当前节点标记为叶节点,并将其类别设为所含样本较多的类别。例如:当划分到某一分支时,节点中有3个样本,其最优划分属性为色泽,而色泽的取值只有一个“浅白”,3个样本中有2个好瓜,这时我们就把这个节点标记为叶节点“好瓜”。
代码实现
数据集:https://download.csdn.net/download/li1873997/12671852
trees.py
from math import log
import operator # 此行加在文件顶部
# 通过排序返回出现次数最多的类别
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
# 递归构建决策树
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet] # 类别向量
if classList.count(classList[0]) == len(classList): # 如果只有一个类别,返回
return classList[0]
if len(dataSet[0]) == 1: # 如果所有特征都被遍历完了,返回出现次数最多的类别
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) # 最优划分属性的索引
bestFeatLabel = labels[bestFeat] # 最优划分属性的标签
myTree = {bestFeatLabel: {}}
del (labels[bestFeat]) # 已经选择的特征不再参与分类
featValues = [example[bestFeat] for example in dataSet]
uniqueValue = set(featValues) # 该属性所有可能取值,也就是节点的分支
for value in uniqueValue: # 对每个分支,递归构建树
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(
splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
# 计算信息熵
def calcShannonEnt(dataSet):
numEntries = len(dataSet) # 样本数
labelCounts = {}
for featVec in dataSet: # 遍历每个样本
currentLabel = featVec[-1] # 当前样本的类别
if currentLabel not in labelCounts.keys(): # 生成类别字典
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 计算信息熵
prob = float(labelCounts[key]) / numEntries
shannonEnt = shannonEnt - prob * log(prob, 2)
return shannonEnt
# 划分数据集,axis:按第几个属性划分,value:要返回的子集对应的属性值
def splitDataSet(dataSet, axis, value):
retDataSet = []
featVec = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reducedFeatVec)
return retDataSet
# 选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 # 属性的个数
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures): # 对每个属性技术信息增益
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) # 该属性的取值集合
newEntropy = 0.0
for value in uniqueVals: # 对每一种取值计算信息增益
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain): # 选择信息增益最大的属性
bestInfoGain = infoGain
bestFeature = i
return bestFeature
# 计算信息熵
def calcShannonEnt(dataSet):
numEntries = len(dataSet) # 样本数
labelCounts = {}
for featVec in dataSet: # 遍历每个样本
currentLabel = featVec[-1] # 当前样本的类别
if currentLabel not in labelCounts.keys(): # 生成类别字典
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 计算信息熵
prob = float(labelCounts[key]) / numEntries
shannonEnt = shannonEnt - prob * log(prob, 2)
return shannonEnt
# 划分数据集,axis:按第几个属性划分,value:要返回的子集对应的属性值
def splitDataSet(dataSet, axis, value):
retDataSet = []
featVec = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reducedFeatVec)
return retDataSet
# 选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 # 属性的个数
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures): # 对每个属性技术信息增益
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) # 该属性的取值集合
newEntropy = 0.0
for value in uniqueVals: # 对每一种取值计算信息增益
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain): # 选择信息增益最大的属性
bestInfoGain = infoGain
bestFeature = i
return bestFeature
下面使用西瓜样本集,测试一下算法,创建一个WaterMalonTree.py文件。因为生成的树是中文表示的,因此使用json.dumps()方法来打印结果。如果是不含中文,直接print即可。
# -*- coding: cp936 -*-
import trees
import json
fr = open(r'C:\Python27\py\DecisionTree\watermalon.txt')
listWm = [inst.strip().split('\t') for inst in fr.readlines()]
labels = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']
Trees = trees.createTree(listWm, labels)
print json.dumps(Trees, encoding="cp936", ensure_ascii=False)
运行该文件,打印出西瓜的决策树,它是一个字典:
{"纹理": {"模糊": "否", "清晰": {"根蒂": {"稍蜷": {"色泽": {"乌黑": {"触感": {"软粘": "否", "硬滑": "是"}}, "青绿": "是"}}, "蜷缩": "是", "硬挺": "否"}}, "稍糊": {"触感": {"软粘": "是", "硬滑": "否"}}}}
总结
决策树是一种基于树结构来进行决策的分类算法,我们希望从给定的训练数据集学得一个模型(即决策树),用该模型对新样本分类。决策树可以非常直观展现分类的过程和结果,一旦模型构建成功,对新样本的分类效率也相当高。
最经典的决策树算法有ID3、C4.5、CART,其中ID3算法是最早被提出的,它可以处理离散属性样本的分类,C4.5和CART算法则可以处理更加复杂的分类问题,本文重点介绍ID3算法。下一篇介绍通过《 数据可视化-Python实现Matplotlib绘制决策树》。
- 上一篇:决策树模型
- 下一篇:python决策树用于分类和回归问题实际应用案例
相关推荐
- apisix动态修改路由的原理_动态路由协议rip的配置
-
ApacheAPISIX能够实现动态修改路由(DynamicRouting)的核心原理,是它将传统的静态Nginx配置彻底解耦,通过中心化配置存储(如etcd)+OpenRest...
- 使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统
-
在之前的文章中,xiaoz推荐过可视化Nginx反向代理工具NginxProxyManager,最近xiaoz还发现一款功能更加强大,界面更加漂亮的OpenRestyManager,完全可以替代...
- OpenResty 入门指南:从基础到动态路由实战
-
一、引言1.1OpenResty简介OpenResty是一款基于Nginx的高性能Web平台,通过集成Lua脚本和丰富的模块,将Nginx从静态反向代理转变为可动态编程的应用平台...
- OpenResty 的 Lua 动态能力_openresty 动态upstream
-
OpenResty的Lua动态能力是其最核心的优势,它将LuaJIT嵌入到Nginx的每一个请求处理阶段,使得开发者可以用Lua脚本动态控制请求的生命周期,而无需重新编译或rel...
- LVS和Nginx_lvs和nginx的区别
-
LVS(LinuxVirtualServer)和Nginx都是常用的负载均衡解决方案,广泛应用于大型网站和分布式系统中,以提高系统的性能、可用性和可扩展性。一、基本概念1.LVS(Linux...
- 外网连接到内网服务器需要端口映射吗,如何操作?
-
外网访问内网服务器通常需要端口映射(或内网穿透),这是跨越公网与私网边界的关键技术。操作方式取决于网络环境,以下分场景详解。一、端口映射的核心原理内网服务器位于私有IP地址段(如192.168.x.x...
- Nginx如何解决C10K问题(1万个并发连接)?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的必备中间件,下面我就全面来详解NginxC10k问题@mikechen文章来源:mikec...
- 炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神
-
炸场!SpringBoot9大内置过滤器实战手册:从坑到神在Java开发圈摸爬滚打十年,见过太多团队重复造轮子——明明SpringBoot自带的过滤器就能解决的问题,偏偏要手写几十...
- WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞
-
一般大家都关注WordPress,毕竟用户量巨大,而国内的Typecho作为轻量级的博客系统就关注的人并不多。Typecho有很多借鉴WordPress的,包括兼容的xmlrpc接口,而WordPre...
- Linux Shell 入门教程(六):重定向、管道与命令替换
-
在前几篇中,我们学习了函数、流程控制等Shell编程的基础内容。现在我们来探索更高级的功能:如何控制数据流向、将命令链接在一起、让命令间通信变得可能。一、输入输出重定向(>、>>...
- Nginx的location匹配规则,90%的人都没完全搞懂,一张图让你秒懂
-
刚配完nginx网站就崩了?运维和开发都头疼的location匹配规则优先级,弄错顺序直接导致500错误。核心在于nginx处理location时顺序严格:先精确匹配=,然后前缀匹配^~,接着按顺序正...
- liunx服务器查看故障命令有那些?_linux查看服务器性能命令
-
在Linux服务器上排查故障时,需要使用一系列命令来检查系统状态、日志文件、资源利用情况以及网络状况。以下是常用的故障排查命令,按照不同场景分类说明。1.系统资源相关命令1.1查看CPU使...
- 服务器被入侵的常见迹象有哪些?_服务器入侵可以被完全操纵吗
-
服务器被入侵可能会导致数据泄露、服务异常或完全失控。及时发现入侵迹象能够帮助你尽早采取措施,减少损失。以下是服务器被入侵的常见迹象以及相关的分析与处理建议。1.服务器被入侵的常见迹象1.1系统性能...
- 前端错误可观测最佳实践_前端错误提示
-
场景解析对于前端项目,生产环境的代码通常经过压缩、混淆和打包处理,当代码在运行过程中产生错误时,通常难以还原原始代码从而定位问题,对于深度混淆尤其如此,因此Mozilla自2011年开始发起并...
- 8个能让你的Kubernetes集群“瞬间崩溃”的配置错误
-
错误一:livenessProbe探针“自杀式”配置——30秒内让Pod重启20次现象:Pod状态在Running→Terminating→CrashLoopBackOff之间循环,重启间隔仅...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- apisix动态修改路由的原理_动态路由协议rip的配置
- 使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统
- OpenResty 入门指南:从基础到动态路由实战
- OpenResty 的 Lua 动态能力_openresty 动态upstream
- LVS和Nginx_lvs和nginx的区别
- 外网连接到内网服务器需要端口映射吗,如何操作?
- Nginx如何解决C10K问题(1万个并发连接)?
- 炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神
- WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞
- Linux Shell 入门教程(六):重定向、管道与命令替换
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)