百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python机器学习系列之scikit-learn决策树分类问题简单实践

off999 2024-11-26 07:24 21 浏览 0 评论

1.决策树分类问题实践

在前面的一个章节中,我们简要地概述了一下决策树的原理知识,了解了一下决策树分支原理,调参过程以及可视化决策树:

在决策树DecisionTree中,DecisionTreeClassifier是能够处理一些分类问题的。与其他分类器一样,DecisionTreeClassifier将两个数组作为输入:一个数组X,稀疏或者密集,shape (n_samples, n_features),以及一个整数值数组Y,shape (n_samples,)

from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

拟合后,该模型可用于预测样本类别:

clf.predict([[2., 2.]])
array([1])

如果存在多个具有相同且最高概率的类,分类器将预测这些类中具有最低索引的类。

作为输出特点类的替代方法,可以预测每个类的概率,即该类在叶子节点中的训练样本的分数:

clf.predict_proba([[2., 2.]])
array([[0., 1.]])

DecisionTreeClassifier能够进行二元(其中标签为[-1,1])分类和多分类(其中标签为[0,.....,k-1])分类。


下面通过一个简单的官方示例来了解下,绘制根据iris数据集的一对特征进行训练的决策树的决策面。

对于每一对iris数据集特征,决策树学习由训练样本推断的简单阈值规则组合构成的决策边界。

1.1 加载数据集

首先加载scikit-learn附带的iris数据集样本:

from sklearn.datasets import load_iris

iris = load_iris()

通过数据集的属性简单探索下iris数据集的结构:

iris.data.shape
(150, 4)

通过shape属性我们可以清楚地看到,iris数据集是一个二维矩阵,数据集中有150个样本,每一个样本包含4个特征属性;

iris.target.shape
(150,)

其实,标签数据是一个一维矩阵,标签中也有150个样本;从这里能够充分说明iris数据集中,特征的样本数与标签的样本数是一样的,都是150个样本。

import numpy as np

np.unique(iris.target)
array([0, 1, 2])
iris.target_names
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

通过以上代码,我们可以验证标签数据集中包含3个类别,分别是:setosa,versicolor和virginica。

import pandas as pd

csv = pd.concat([pd.DataFrame(iris.data, columns=iris.feature_names), pd.DataFrame(iris.target, columns=['target'])], axis=1)
csv
csv.head()

通过pandas将数据集转化成csv格式,调用head()函数,我们可以清楚地看到iris数据集的全貌,经过简单的探索,我们可以清楚地发现,iris数据集是一个包含150个样本数据,4个特征向量,以及标签包含150个样本和3个分类的数据集。


1.2建立模型

下面开始建立决策树模型,导入决策树模块和一些辅助的模块:

# 处理数组和矩阵的模块
import numpy as np
# 处理画图的模块
import matplotlib.pyplot as plt
# 决策树模块
from sklearn.tree import DecisionTreeClassifier
# 定义所需要的参数
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02
# 设置画布大小
plt.figure(figsize=(12, 6))
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):
    X = iris.data[:, pair]
    y = iris.target

    # 训练模型
    clf = DecisionTreeClassifier().fit(X, y)

    # 画图
    plt.subplot(2, 3, pairidx + 1)

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(
        np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)
    )
    plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
		
		# 预测
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)

    plt.xlabel(iris.feature_names[pair[0]])
    plt.ylabel(iris.feature_names[pair[1]])

    for i, color in zip(range(n_classes), plot_colors):
        idx = np.where(y == i)
        plt.scatter(
            X[idx, 0],
            X[idx, 1],
            c=color,
            label=iris.target_names[i],
            cmap=plt.cm.RdYlBu,
            edgecolor="black",
            s=15,
        )

plt.suptitle("Decision surface of decision trees trained on pairs of features")
plt.legend(loc="lower right", borderpad=0, handletextpad=0)
_ = plt.axis("tight")

1.3运行效果

上面的代码在jupyter lab里运行如下:

绘制的决策树决策边界如上图所示,我们可以简单总结如下:

  • iris数据集在决策树上经过训练(fit)和预测(predict)后,绘制出3个决策面,因为iris数据集中包括3个分类;
  • 3种不同的颜色对应3种不同的分类,通过3个不同的决策面把iris数据集划分成3个不同的类别;
  • 仔细观察绘制的图例,我们可以发现大部分相同颜色的点都落在了相同颜色的面,红色点落在红色面中,蓝色点落在蓝色面中;这表示这部分样本被正确的分类了,也就是说大部分样本都被正确地分类了;
  • 每个分类的决策面都存在一条清晰明确的分割线,把3个类别划分开;
  • 当我们放大图例的图片时,我们可以看到有极个别的点落在了其他分类的决策面中,比如:有几个红色的点落在了蓝色的决策面中,这说明这部分少数的点被误分类了;
  • 大部分点都落在了正确的决策面,少数部分点落在了其他决策面,这充分说明决策树DecisionTreeClassifier分类的准确率不是100%正确分类的,存在一定比例的错误分类;
  • 少数点落在其他决策面的问题就是错误分类的问题;

1.4绘制决策树结构

下面通过简单的几行代码来可视化下iris数据集上,决策树的形状:

from sklearn.tree import plot_tree

plt.figure(figsize=(16, 9))
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
plot_tree(clf, 
          filled=True, 
          rounded=True,
          feature_names=iris.feature_names,
         class_names=['setosa', 'versicolor', 'virginica'])
plt.title("Decision tree trained on all the iris features")
plt.savefig('DecisionTreeClassifier.jpg')
plt.show()

通过scikit-learn模块的plot_tree函数,我们可以轻松地绘制一棵决策树的树结构:

  • 决策树有一个根节点,许多父节点和叶子节点;
  • 每一个节点,不管是根节点,父节点还是叶子节点,都包含许多信息,例如:gini系数;因为决策树默认的分枝方法“不纯度”采用的是gini系数;
  • 这棵决策树的节点不同颜色代表不同的分类类别,当节点的颜色越深的时候,该节点的gini系数也是最低的;
  • 决策树的所有叶子节点的gini系数都为0,也就是说不纯度为0的时候我们就可以选择出标签的一个类别了;

1.5探索决策树结构

我们详细地探索下每一个节点都包含哪些数据,都有哪些含义:

  1. 每棵树节点都有5行数据,每行数据代表的意义是不一样的;
  2. 第一行数据表示对特征点进行提问,该节点分枝的左节点是对这个提问的YES回答,该节点分枝的右节点是对这个提问的NO回答;
  3. 第二行数据是不纯度指标,默认是gini系数的值;通过这棵决策树我们不难发现整个决策树从根节点到叶子节点gini系数是不断变小的;也就是说不纯度是降低的。
  4. 不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。
  5. 第三行数据samples表示该节点包含的样本数量;
  6. 第四行数据value表示标签的每一个类别所占的数量,因为iris数据集中标签包含3个类别,所以value是包含3个数值的数组;
  7. 第五行数据class表示该节点所在的分类类别;

我们再深入的探索下,在这棵决策树中哪些特征指标对这棵树起决定性作用呢?我们可以使用决策树的关键属性feature_importances_来看一下,哪些特征对这样一棵决策树的贡献最大。

clf.feature_importances_
[*zip(iris.feature_names,clf.feature_importances_)]

我们来简单分析下,iris数据集中一个样本包含4个特征数据,其中“petal length”花瓣的长度对这棵决策树的贡献是最大的,因为它的数值最大,数值越大对决策树的贡献也就越大;“sepal width”萼片宽度对这棵决策树的贡献最小,它的值为0。

1.6决策树的准确率

下面我们通过简单的几行代码来了解下决策树分类的准确率问题

from sklearn.model_selection import train_test_split

Xtrain, Xtest, Ytrain, Ytest = train_test_split(iris.data,iris.target,test_size=0.3)

clf = DecisionTreeClassifier()
clf = clf.fit(Xtrain, Ytrain)

#返回预测的准确度accuracy
score = clf.score(Xtest, Ytest) 

score

运行效果如下:

可以通过决策树DecisionTreeClassifier的score函数获取决策树分类的准确率,通过以上代码我们可以非常容易的获取一棵默认参数的决策树在iris数据集上分类的准确率为95%以上;

在这里不得不提的是,所有接口中要求输入X_train和X_test的部分,输入的特征矩阵必须至少是一个二维矩阵。sklearn不接受任何一维矩阵作为特征矩阵被输入。如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1)来给你的数据增维。

1.7决策树随机性

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据,随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

当我们反复运行上面决策树准确率的代码的时候,输出的score会每运行一次数值就会变化一次,这是因为我们建立的决策树模型没有设定任何参数,都是采用决策树默认的参数,那么当我们给决策树设定一个random_state看看效果如何?

clf = DecisionTreeClassifier(random_state=10)
clf = clf.fit(Xtrain, Ytrain)

#返回预测的准确度accuracy
score = clf.score(Xtest, Ytest) 

score

当我们加上random_state参数后,无论运行多少次上面的代码,score的输出值就已经能够确定下来了,也就是说score的值不会再改变了;random_state的取值可以是任意整数值,它只是代表决策树的随机性能够被确定下来。

1.8决策树剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树往往会过拟合,这就是说,它会在训练集上表现很好,但在测试集上却表现糟糕。我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对未知数据的拟合程度不足。

clf = DecisionTreeClassifier(random_state=30
                                  ,max_depth=3
                                  ,min_samples_leaf=10
                                  ,min_samples_split=10
)
clf = clf.fit(iris.data, iris.target)
plt.figure(figsize=(16, 9))
plot_tree(clf, 
          filled=True, 
          rounded=True,
          feature_names=iris.feature_names,
         class_names=['setosa', 'versicolor', 'virginica'])
plt.savefig('cut_DecisionTreeClassifier.jpg')
plt.show()

剪枝后的决策树运行效果:

通过运行后生成的剪枝决策树结构与上面没有剪枝的决策树结构进行对比,我们可以清楚地发现,剪枝后的决策树的树结构更加扁平化了,树的深度降低了。具体参数解释如下:

  • random_state用来设置分枝中的随机模式的参数,默认None;
  • max_depth限制树的最大深度,超过设定深度的树枝全部剪掉;
  • min_samples_leaf和min_samples_split表示min_samples_leaf限定一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生;

1.9确认最优的剪枝参数

那具体怎么来确定每个参数填写什么值呢?这时候,我们就要使用确定超参数的曲线来进行判断了,继续使用我们已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲线,它是用来衡量不同超参数取值下模型的表现的线。在我们建好的决策树里,我们的模型度量指标就是score。

scores=[]
for i in range(10):
    clf = DecisionTreeClassifier(max_depth=i+1,
                                 random_state=10)
    clf = clf.fit(Xtrain, Ytrain)
    score= clf.score(Xtest, Ytest)
    scores.append(score)
plt.plot(range(1,11),scores,color="red",label="max_depth")
plt.grid()
plt.legend()
plt.savefig('max_depth.jpg')
plt.show()

运行效果图:

通过上面的学习曲线,我们可以很容易地发现,当max_depth为3的时候,我们的这个决策树模型的准确率已经保持不变了,最大准确率保持在97%以上;也就是说这棵决策树在保持其他默认参数的情况下,树的最大深度为3的时候,这棵决策树的分类效果是最后的,分类准确率最高。

无论如何,剪枝参数的默认值会让树无尽地生长,这些树在某些数据集上可能非常巨大,对内存的消耗也非常巨大。所以如果你手中的数据集非常巨大,你已经预测到无论如何你都是要剪枝的,那提前设定这些参数来控制树的复杂性和大小会比较好。

至此,我们已经学完了决策树DecisionTreeClassifier和用决策树绘图(plot_tree)的所有基础。


不积跬步,无以至千里;

不积小流,无以成江海;

参考资料:

https://scikit-learn.org/stable/modules/tree.html

相关推荐

PYTHON-简易计算器的元素介绍

[烟花]了解模板代码的组成importPySimpleGUIassg#1)导入库layout=[[],[],[]]#2)定义布局,确定行数window=sg.Window(&#...

如何使用Python编写一个简单的计算器程序

Python是一种简单易学的编程语言,非常适合初学者入门。本文将教您如何使用Python编写一个简单易用的计算器程序,帮助您快速进行基本的数学运算。无需任何高深的数学知识,只需跟随本文的步骤,即可轻松...

用Python打造一个简洁美观的桌面计算器

最近在学习PythonGUI编程,顺手用Tkinter实现了一个简易桌面计算器,功能虽然不复杂,但非常适合新手练手。如果你正在学习Python,不妨一起来看看这个项目吧!项目背景Tkint...

用Python制作一个带图形界面的计算器

大家好,今天我要带大家使用Python制作一个具有图形界面的计算器应用程序。这个项目不仅可以帮助你巩固Python编程基础,还可以让你初步体验图形化编程的乐趣。我们将使用Python的tkinter库...

用python怎么做最简单的桌面计算器

有网友问,用python怎么做一个最简单的桌面计算器。如果只强调简单,在本机运行,不考虑安全性和容错等的话,你能想到的最简单的方案是什么呢?我觉得用tkinter加eval就够简单的。现在开整。首先创...

说好的《Think Python 2e》更新呢!

编程派微信号:codingpy本周三脱更了,不过发现好多朋友在那天去访问《ThinkPython2e》的在线版,感觉有点对不住呢(实在是没抽出时间来更新)。不过还好本周六的更新可以实现,要不就放一...

构建AI系统(三):使用Python设置您的第一个MCP服务器

是时候动手实践了!在这一部分中,我们将设置开发环境并创建我们的第一个MCP服务器。如果您从未编写过代码,也不用担心-我们将一步一步来。我们要构建什么还记得第1部分中Maria的咖啡馆吗?我们正在创...

函数还是类?90%程序员都踩过的Python认知误区

那个深夜,你在调试代码,一行行检查变量类型。突然,一个TypeError错误蹦出来,你盯着那句"strobjectisnotcallable",咖啡杯在桌上留下了一圈深色...

《Think Python 2e》中译版更新啦!

【回复“python”,送你十本电子书】又到了周三,一周快过去一半了。小编按计划更新《ThinkPython2e》最新版中译。今天更新的是第五章:条件和递归。具体内容请点击阅读原文查看。其他章节的...

Python mysql批量更新数据(兼容动态数据库字段、表名)

一、应用场景上篇文章我们学会了在pymysql事务中批量插入数据的复用代码,既然有了批量插入,那批量更新和批量删除的操作也少不了。二、解决思路为了解决批量删除和批量更新的问题,提出如下思路:所有更新语...

Python Pandas 库:解锁 combine、update 和compare函数的强大功能

在Python的数据处理领域,Pandas库提供了丰富且实用的函数,帮助我们高效地处理和分析数据。今天,咱们就来深入探索Pandas库中四个功能独特的函数:combine、combine_fi...

记录Python3.7.4更新到Python.3.7.8

Python官网Python安装包下载下载文件名称运行后选择升级选项等待安装安装完毕打开IDLE使用Python...

Python千叶网原图爬虫:界面化升级实践

该工具以Python爬虫技术为核心,实现千叶网原图的精准抓取,突破缩略图限制,直达高清资源。新增图形化界面(GUI)后,操作门槛大幅降低:-界面集成URL输入、存储路径选择、线程设置等核心功能,...

__future__模块:Python语言版本演进的桥梁

摘要Python作为一门持续演进的编程语言,在版本迭代过程中不可避免地引入了破坏性变更。__future__模块作为Python兼容性管理的核心机制,为开发者提供了在旧版本中体验新特性的能力。本文深入...

Python 集合隐藏技能:add 与 update 的致命区别,90% 开发者都踩过坑

add函数的使用场景及错误注意添加单一元素:正确示例:pythons={1,2}s.add(3)print(s)#{1,2,3}错误场景:试图添加可变对象(如列表)会报错(Pytho...

取消回复欢迎 发表评论: