百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

机器学习之分类回归树(python实现CART)

off999 2024-11-26 07:24 15 浏览 0 评论

机器学习之分类回归树(python实现CART)

之前有文章介绍过决策树(ID3)。简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的。按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分过于迅速的问题。ID3算法还不能处理连续性特征。 下面简单介绍一下其他算法:

CART 分类回归树

CART是Classification And Regerssion Trees的缩写,既能处理分类任务也能做回归任务。

CART树的典型代表时二叉树,根据不同的条件将分类。

CART树构建算法 与ID3决策树的构建方法类似,直接给出CART树的构建过程。首先与ID3类似采用字典树的数据结构,包含以下4中元素:

  • 待切分的特征
  • 待切分的特征值
  • 右子树。当不再需要切分的时候,也可以是单个值
  • 左子树,类似右子树。

过程如下:

  1. 寻找最合适的分割特征
  2. 如果不能分割数据集,该数据集作为一个叶子节点。
  3. 对数据集进行二分割
  4. 对分割的数据集1重复1, 2,3 步,创建右子树。
  5. 对分割的数据集2重复1, 2,3 步,创建左子树。

明显的递归算法。

通过数据过滤的方式分割数据集,返回两个子集。

def splitDatas(rows, value, column):
 # 根据条件分离数据集(splitDatas by value, column)
 # return 2 part(list1, list2)
 list1 = []
 list2 = []
 if isinstance(value, int) or isinstance(value, float):
 for row in rows:
 if row[column] >= value:
 list1.append(row)
 else:
 list2.append(row)
 else:
 for row in rows:
 if row[column] == value:
 list1.append(row)
 else:
 list2.append(row)
 return list1, list2
复制代码

划分数据点

创建二进制决策树本质上就是递归划分输入空间的过程。

代码如下:

# gini()
def gini(rows):
 # 计算gini的值(Calculate GINI)
 length = len(rows)
 results = calculateDiffCount(rows)
 imp = 0.0
 for i in results:
 imp += results[i] / length * results[i] / length
 return 1 - imp
复制代码

构建树

def buildDecisionTree(rows, evaluationFunction=gini):
 # 递归建立决策树, 当gain=0,时停止回归
 # build decision tree bu recursive function
 # stop recursive function when gain = 0
 # return tree
 currentGain = evaluationFunction(rows)
 column_lenght = len(rows[0])
 rows_length = len(rows)
 best_gain = 0.0
 best_value = None
 best_set = None
 # choose the best gain
 for col in range(column_lenght - 1):
 col_value_set = set([x[col] for x in rows])
 for value in col_value_set:
 list1, list2 = splitDatas(rows, value, col)
 p = len(list1) / rows_length
 gain = currentGain - p * evaluationFunction(list1) - (1 - p) * evaluationFunction(list2)
 if gain > best_gain:
 best_gain = gain
 best_value = (col, value)
 best_set = (list1, list2)
 dcY = {'impurity': '%.3f' % currentGain, 'sample': '%d' % rows_length}
 #
 # stop or not stop
 if best_gain > 0:
 trueBranch = buildDecisionTree(best_set[0], evaluationFunction)
 falseBranch = buildDecisionTree(best_set[1], evaluationFunction)
 return Tree(col=best_value[0], value = best_value[1], trueBranch = trueBranch, falseBranch=falseBranch, summary=dcY)
 else:
 return Tree(results=calculateDiffCount(rows), summary=dcY, data=rows)
复制代码

上面代码的功能是先找到数据集切分的最佳位置和分割数据集。之后通过递归构建出上面图片的整棵树。

剪枝

在决策树的学习中,有时会造成决策树分支过多,这是就需要去掉一些分支,降低过度拟合。通过决策树的复杂度来避免过度拟合的过程称为剪枝。 后剪枝需要从训练集生成一棵完整的决策树,然后自底向上对非叶子节点进行考察。利用测试集判断是否将该节点对应的子树替换成叶节点。 代码如下:

def prune(tree, miniGain, evaluationFunction=gini):
 # 剪枝 when gain < mini Gain, 合并(merge the trueBranch and falseBranch)
 if tree.trueBranch.results == None:
 prune(tree.trueBranch, miniGain, evaluationFunction)
 if tree.falseBranch.results == None:
 prune(tree.falseBranch, miniGain, evaluationFunction)
 if tree.trueBranch.results != None and tree.falseBranch.results != None:
 len1 = len(tree.trueBranch.data)
 len2 = len(tree.falseBranch.data)
 len3 = len(tree.trueBranch.data + tree.falseBranch.data)
 p = float(len1) / (len1 + len2)
 gain = evaluationFunction(tree.trueBranch.data + tree.falseBranch.data) - p * evaluationFunction(tree.trueBranch.data) - (1 - p) * evaluationFunction(tree.falseBranch.data)
 if gain < miniGain:
 tree.data = tree.trueBranch.data + tree.falseBranch.data
 tree.results = calculateDiffCount(tree.data)
 tree.trueBranch = None
 tree.falseBranch = None
复制代码

当节点的gain小于给定的 mini Gain时则合并这两个节点.。

最后是构建树的代码:

if __name__ == '__main__':
 dataSet = loadCSV()
 decisionTree = buildDecisionTree(dataSet, evaluationFunction=gini)
 prune(decisionTree, 0.4)
 test_data = [5.9,3,4.2,1.5]
 r = classify(test_data, decisionTree)
 print(r)
复制代码

可以打印decisionTree可以构建出如如上的图片中的决策树。 后面找一组数据测试看能否得到正确的分类。

完整代码和数据集请查看:

github:CART

总结:

  • CART决策树
  • 分割数据集
  • 递归创建树

参考文章:

CART分类回归树分析与python实现

CART决策树(Decision Tree)的Python源码实现

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: