机器学习之分类回归树(python实现CART)
off999 2024-11-26 07:24 15 浏览 0 评论
机器学习之分类回归树(python实现CART)
之前有文章介绍过决策树(ID3)。简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的。按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分过于迅速的问题。ID3算法还不能处理连续性特征。 下面简单介绍一下其他算法:
CART 分类回归树
CART是Classification And Regerssion Trees的缩写,既能处理分类任务也能做回归任务。
CART树的典型代表时二叉树,根据不同的条件将分类。
CART树构建算法 与ID3决策树的构建方法类似,直接给出CART树的构建过程。首先与ID3类似采用字典树的数据结构,包含以下4中元素:
- 待切分的特征
- 待切分的特征值
- 右子树。当不再需要切分的时候,也可以是单个值
- 左子树,类似右子树。
过程如下:
- 寻找最合适的分割特征
- 如果不能分割数据集,该数据集作为一个叶子节点。
- 对数据集进行二分割
- 对分割的数据集1重复1, 2,3 步,创建右子树。
- 对分割的数据集2重复1, 2,3 步,创建左子树。
明显的递归算法。
通过数据过滤的方式分割数据集,返回两个子集。
def splitDatas(rows, value, column): # 根据条件分离数据集(splitDatas by value, column) # return 2 part(list1, list2) list1 = [] list2 = [] if isinstance(value, int) or isinstance(value, float): for row in rows: if row[column] >= value: list1.append(row) else: list2.append(row) else: for row in rows: if row[column] == value: list1.append(row) else: list2.append(row) return list1, list2 复制代码
划分数据点
创建二进制决策树本质上就是递归划分输入空间的过程。
代码如下:
# gini() def gini(rows): # 计算gini的值(Calculate GINI) length = len(rows) results = calculateDiffCount(rows) imp = 0.0 for i in results: imp += results[i] / length * results[i] / length return 1 - imp 复制代码
构建树
def buildDecisionTree(rows, evaluationFunction=gini): # 递归建立决策树, 当gain=0,时停止回归 # build decision tree bu recursive function # stop recursive function when gain = 0 # return tree currentGain = evaluationFunction(rows) column_lenght = len(rows[0]) rows_length = len(rows) best_gain = 0.0 best_value = None best_set = None # choose the best gain for col in range(column_lenght - 1): col_value_set = set([x[col] for x in rows]) for value in col_value_set: list1, list2 = splitDatas(rows, value, col) p = len(list1) / rows_length gain = currentGain - p * evaluationFunction(list1) - (1 - p) * evaluationFunction(list2) if gain > best_gain: best_gain = gain best_value = (col, value) best_set = (list1, list2) dcY = {'impurity': '%.3f' % currentGain, 'sample': '%d' % rows_length} # # stop or not stop if best_gain > 0: trueBranch = buildDecisionTree(best_set[0], evaluationFunction) falseBranch = buildDecisionTree(best_set[1], evaluationFunction) return Tree(col=best_value[0], value = best_value[1], trueBranch = trueBranch, falseBranch=falseBranch, summary=dcY) else: return Tree(results=calculateDiffCount(rows), summary=dcY, data=rows) 复制代码
上面代码的功能是先找到数据集切分的最佳位置和分割数据集。之后通过递归构建出上面图片的整棵树。
剪枝
在决策树的学习中,有时会造成决策树分支过多,这是就需要去掉一些分支,降低过度拟合。通过决策树的复杂度来避免过度拟合的过程称为剪枝。 后剪枝需要从训练集生成一棵完整的决策树,然后自底向上对非叶子节点进行考察。利用测试集判断是否将该节点对应的子树替换成叶节点。 代码如下:
def prune(tree, miniGain, evaluationFunction=gini): # 剪枝 when gain < mini Gain, 合并(merge the trueBranch and falseBranch) if tree.trueBranch.results == None: prune(tree.trueBranch, miniGain, evaluationFunction) if tree.falseBranch.results == None: prune(tree.falseBranch, miniGain, evaluationFunction) if tree.trueBranch.results != None and tree.falseBranch.results != None: len1 = len(tree.trueBranch.data) len2 = len(tree.falseBranch.data) len3 = len(tree.trueBranch.data + tree.falseBranch.data) p = float(len1) / (len1 + len2) gain = evaluationFunction(tree.trueBranch.data + tree.falseBranch.data) - p * evaluationFunction(tree.trueBranch.data) - (1 - p) * evaluationFunction(tree.falseBranch.data) if gain < miniGain: tree.data = tree.trueBranch.data + tree.falseBranch.data tree.results = calculateDiffCount(tree.data) tree.trueBranch = None tree.falseBranch = None 复制代码
当节点的gain小于给定的 mini Gain时则合并这两个节点.。
最后是构建树的代码:
if __name__ == '__main__': dataSet = loadCSV() decisionTree = buildDecisionTree(dataSet, evaluationFunction=gini) prune(decisionTree, 0.4) test_data = [5.9,3,4.2,1.5] r = classify(test_data, decisionTree) print(r) 复制代码
可以打印decisionTree可以构建出如如上的图片中的决策树。 后面找一组数据测试看能否得到正确的分类。
完整代码和数据集请查看:
github:CART
总结:
- CART决策树
- 分割数据集
- 递归创建树
参考文章:
CART分类回归树分析与python实现
CART决策树(Decision Tree)的Python源码实现
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)